1.这是一种在线的强化学习方法
2.使用的是动作状态概率的输出值,求取最大化的收益Q, 而不是直接输出Q值
log_prob = torch.log(self.policy_net(state).gather(1, action)) G = self.gamma * G + reward loss = -log_prob * G # 最大化log_prob * G 即最小化-log_prob * G
3.对于action的获取,使用的是分布概率的抽取, 即在动作概率中进行随机的抽取
state = torch.tensor([state], dtype=torch.float).to(self.device) probs = self.policy_net(state) action_dist = torch.distributions.Categorical(probs) action = action_dist.sample() # 根据输出的概率进行抽样
train.py
import gym import torch import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from model import REINFORCE import rl_utils learning_rate = 1e-3 num_episodes = 1000 hidden_dim = 128 gamma = 0.98 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") env_name = "CartPole-v0" env = gym.make(env_name) env.seed(0) torch.manual_seed(0) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = REINFORCE(state_dim, hidden_dim, action_dim, learning_rate, gamma, device) return_list = [] for i in range(10): with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): episode_return = 0 transition_dict = { 'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': [] } state = env.reset() done = False while not done: action = agent.take_action(state) next_state, reward, done, _ = env.step(action) transition_dict['states'].append(state) transition_dict['actions'].append(action) transition_dict['next_states'].append(next_state) transition_dict['rewards'].append(reward) transition_dict['dones'].append(done) state = next_state episode_return += reward return_list.append(episode_return) agent.update(transition_dict) if (i_episode + 1) % 10 == 0: pbar.set_postfix({ 'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f'%np.mean(return_list[-10:]) }) pbar.update(1) episodes_list = list(range(len(return_list))) plt.plot(episodes_list, return_list) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('REINFORCE on {}'.format(env_name)) plt.show() mv_return = rl_utils.moving_average(return_list, 9) plt.plot(episodes_list, mv_return) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('REINFORCE on {}'.format(env_name)) plt.show()
model.py
import torch import torch.nn.functional as F # 策略网络 class PolicyNet(torch.nn.Module): def __init__(self, state_dim, hidden_dim, action_dim): super(PolicyNet, self).__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) return F.softmax(self.fc2(x), dim=1) class REINFORCE: def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma, device): self.policy_net = PolicyNet(state_dim, hidden_dim, action_dim).to(device) self.optimizer = torch.optim.Adam(self.policy_net.parameters(), lr=learning_rate) self.gamma = gamma # 折扣因子 self.device = device def take_action(self, state): state = torch.tensor([state], dtype=torch.float).to(self.device) probs = self.policy_net(state) action_dist = torch.distributions.Categorical(probs) action = action_dist.sample() # 根据输出的概率进行抽样 return action.item() def update(self, transition_dict): reward_list = transition_dict['rewards'] state_list = transition_dict['states'] action_list = transition_dict['actions'] G = 0 self.optimizer.zero_grad() for i in reversed(range(len(reward_list))): # 从最后一步算起 reward = reward_list[i] state = torch.tensor([state_list[i]], dtype=torch.float).to(self.device) action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device) log_prob = torch.log(self.policy_net(state).gather(1, action)) G = self.gamma * G + reward loss = -log_prob * G # 最大化log_prob * G 即最小化-log_prob * G loss.backward() # 反向传播梯度 self.optimizer.step() #梯度下降
rl_utils.py
from tqdm import tqdm import numpy as np import torch import collections import random class ReplayBuffer: def __init__(self, capacity): self.buffer = collections.deque(maxlen=capacity) def add(self, state, action, reward, next_state, done): self.buffer.append((state, action, reward, next_state, done)) def sample(self, batch_size): transitions = random.sample(self.buffer, batch_size) state, action, reward, next_state, done = zip(*transitions) return np.array(state), action, reward, np.array(next_state), done def size(self): return len(self.buffer) def moving_average(a, window_size): cumulative_sum = np.cumsum(np.insert(a, 0, 0)) middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_size r = np.arange(1, window_size - 1, 2) begin = np.cumsum(a[:window_size - 1])[::2] / r end = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1] return np.concatenate((begin, middle, end)) def train_on_policy_agent(env, agent, num_episodes): return_list = [] for i in range(10): with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): episode_return = 0 transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []} state = env.reset() done = False while not done: action = agent.take_action(state) next_state, reward, done, _ = env.step(action) transition_dict['states'].append(state) transition_dict['actions'].append(action) transition_dict['next_states'].append(next_state) transition_dict['rewards'].append(reward) transition_dict['dones'].append(done) state = next_state episode_return += reward return_list.append(episode_return) agent.update(transition_dict) if (i_episode + 1) % 10 == 0: pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f' % np.mean(return_list[-10:])}) pbar.update(1) return return_list def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size): return_list = [] for i in range(10): with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): episode_return = 0 state = env.reset() done = False while not done: action = agent.take_action(state) next_state, reward, done, _ = env.step(action) replay_buffer.add(state, action, reward, next_state, done) state = next_state episode_return += reward if replay_buffer.size() > minimal_size: b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size) transition_dict = {'states': b_s, 'actions': b_a, 'next_states': b_ns, 'rewards': b_r, 'dones': b_d} agent.update(transition_dict) return_list.append(episode_return) if (i_episode + 1) % 10 == 0: pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f' % np.mean(return_list[-10:])}) pbar.update(1) return return_list def compute_advantage(gamma, lmbda, td_delta): td_delta = td_delta.detach().numpy() advantage_list = [] advantage = 0.0 for delta in td_delta[::-1]: advantage = gamma * lmbda * advantage + delta advantage_list.append(advantage) advantage_list.reverse() return torch.tensor(advantage_list, dtype=torch.float)