使用torch的hub模块载入模型,输入数据进行模型的结果输出,对输出的结果做可视化处理
## GITHUB https://github.com/pytorch/hub import torch model = torch.hub.load('pytorch/vision:v0.4.2', 'deeplabv3_resnet101', pretrained=True) model.eval() print(torch.hub.list('pytorch/vision:v0.4.2')) #数据载入,获得图片 import urllib url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg", "dog.jpg") try: urllib.URLopener().retrieve(url, filename) except: urllib.request.urlretrieve(url, filename) from PIL import Image from torchvision import transforms input_image = Image.open(filename) #构建处理图片的函数 preprocess = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]), ] ) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # 产生一个样本 if torch.cuda.is_available(): input_batch = input_batch.to("cuda") model.to("cuda") with torch.no_grad(): output = model(input_batch)['out'][0] output_predictions = output.argmax(0) palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1]) colors = torch.as_tensor([i for i in range(21)])[:, None] * colors colors = (colors % 255).numpy().astype("uint8") r = Image.fromarray(output_predictions.bytes().cpu().numpy()).resize(input_image.size) r.putpalette(colors) import matplotlib.pyplot as plt plt.show(r)