随笔 - 480  文章 - 0 评论 - 45 阅读 - 73万
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

1. cv2.Canny(src, thresh1, thresh2) 进行canny边缘检测

参数说明: src表示输入的图片, thresh1表示最小阈值,thresh2表示最大阈值,用于进一步删选边缘信息

Canny边缘检测步骤:

 

    第一步:使用高斯滤波器进行滤波,去除噪音点

    第二步:使用sobel算子,计算出每个点的梯度大小和梯度方向

    第三步:使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应

    第四步:应用双阈值,来确定真实和潜在的边缘

    第五步:通过抑制弱边缘来完成最终的边缘检测

 

第一步:高斯滤波进行滤波操作

这是3*3的归一化后的高斯核,将当前核与图片中的9个位置对应位置求和,表示当前位置的像素值,进行平滑处理,去除一些噪声点的干扰

第二步:使用sobel算子,计算各个点的梯度大小和梯度方向

使用的sobel算子存在两个方向,即x轴和y轴方向,分别计算x轴的梯度为Gx, 计算y轴的梯度为Gy

当前点的梯度大小 = sqrt(Gx ^ 2 + Gy ^ 2)

梯度的方向:Θ = arctan(Gx / Gy)

第三步:使用非极大值抑制,消除杂散效应

非极大值抑制第一种方式,如图所示,g1表示的是坐上角一点的梯度值,g2为当前点上面一点的梯度值,斜线表示的是梯度的方向,我们需要计算出斜线与g1,g2交点的近似梯度值,使用线性差值表示:即M(dtmp1) = w*M(g2) + (1-w) * M(g1)  w = distance(dtmp1, g2) / distance(g1, g2)

同理计算出M(dtmp2) 即斜线与g3,g4的交点的近似梯度值

将C点的梯度值与M(dtmp1) 和 M(dtmp2)的大小做一个比较,如果比两者都大就保留,否者就去除

非极大值抑制第二种方式,如图所示, 我们可以直接比较梯度方向的斜线与哪条直线比较接近,就与哪个方向上的梯度值进行比较,我们可以初步的知道角度的区间是

(30, 45, 60, 90) , 举例说明,如果斜线靠近45度角的斜线,那么就与对角线上的两个点的梯度做比较,如果都大于则保留,否者剔除

 

第四步:使用双阈值来获得真实边缘和潜在的边缘

进行进一步删选,如果当前梯度值大于给定的maxVal,判断为边界, 如果当前梯度值小于minval则舍弃,如果当前梯度值在给定的最大值和最小值之间,如果其周围的点是边界点,那么当前点保留,否者舍弃

从上图我们可以看出,当minval和maxval越小时,所保留的边缘信息更多

第一步:载入lena图片

第二步:使用两组阈值,对结果作图做比较

第三步:载入汽车的图

第四步: 使用两组阈值,对结果作图做比较

复制代码
import cv2
import numpy as np


img = cv2.imread('lena.jpg')
v1 = cv2.Canny(img, 80, 150)
v2 = cv2.Canny(img, 50, 100)

ret = np.hstack((v1, v2))
cv2.imshow('img', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()
复制代码

在最大阈值和最小阈值都偏小的情况下,我们可以看出右边这幅图比左边这幅图拥有更多的轮廓信息,同样的也容易存在一些非边缘点的信息

car = cv2.imread('car.png')
v1 = cv2.Canny(car, 120, 250)
v2 = cv2.Canny(car, 50, 100)
ret = np.hstack((v1, v2))
cv2.imshow('car', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()

右边的图的边缘信息更多,左边的图很多房子的线条没有了

    

posted on   python我的最爱  阅读(24607)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
点击右上角即可分享
微信分享提示