对于一些标签和特征来说,分布不一定符合正态分布,而在实际的运算过程中则需要数据能够符合正态分布

因此我们需要对特征进行log变化,使得数据在一定程度上可以符合正态分布

进行log变化,就是对数据使用np.log(data+1) 加上1的目的是为了防止数据等于0,而不能进行log变化

代码:

 

第一步:导入数据

第二步:对收入特征做直方图,同时标出中位数所在的位置,即均值

第三步:对收入特征做log变化,使用np.log(data+1) 

第四步:对log收入特征做直方图,标出中位数线的位置,即均值

结论:我们可以发现变化后的特征在一定程度上更加接近正态分布

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 第一步导入数据
ffc_survey_df = pd.read_csv('datasets/fcc_2016_coder_survey_subset.csv', encoding='utf-8')

# 第二步对数据的收入做直方图
fig, ax = plt.subplots()
ffc_survey_df['Income'].hist(color='#A9C5D3', bins=30)
plt.axvline(ffc_survey_df['Income'].quantile(), color='r', label='Binary line')
plt.legend(fontsize=18, loc='best')
ax.set_xlabel('Income', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
ax.set_title('Income_hist', fontsize=12)
plt.show()

# 第三步:对收入的数据进行log变化
ffc_survey_df['log_income'] = np.log(ffc_survey_df['Income'].values+1)
print(ffc_survey_df[['Income', 'log_income']].head())

         log前后的数据

# 第四步:对log变化后的数据画出直方图
fig, ax = plt.subplots()
ffc_survey_df['log_income'].hist(color='#A9C5D3', bins=30)
plt.axvline(ffc_survey_df['log_income'].quantile(), color='r', label='Binary line')
plt.legend(fontsize=18, loc='best')
ax.set_xlabel('log_Income', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
ax.set_title('Income_hist', fontsize=12)
plt.show()

posted on 2019-01-25 22:27  python我的最爱  阅读(6866)  评论(1编辑  收藏  举报