强化学习:当前的奖励值:

#当前奖励 =  当前的概率*(及时奖励 + 衰减系数 * 下一次的奖励)
不断迭代,直到当前的奖励值不发生变换
import numpy as np
from gridworld import GridworldEnv


env = GridworldEnv()

def value_iteration(env, theta=0.0001, discount_factor=1.0):
    """
    Value Iteration Algorithm.
    
    Args:
        env: OpenAI environment. env.P represents the transition probabilities of the environment.
        theta: Stopping threshold. If the value of all states changes less than theta
            in one iteration we are done.
        discount_factor: lambda time discount factor.
        
    Returns:
        A tuple (policy, V) of the optimal policy and the optimal value function.
    """
    
    def one_step_lookahead(state, V):
        """
        Helper function to calculate the value for all action in a given state.
        
        Args:
            state: The state to consider (int)
            V: The value to use as an estimator, Vector of length env.nS
        
        Returns:
            A vector of length env.nA containing the expected value of each action.
        """
        # 每个位置的4个方向,计算当前位置的奖励值
        A = np.zeros(env.nA)
        # 迭代四次
        for a in range(env.nA):
            for prob, next_state, reward, done in env.P[state][a]:
                #当前奖励 =  当前的概率*(及时奖励 + 衰减系数 * 下一次的奖励)
                A[a] += prob * (reward + discount_factor * V[next_state])
        return A
    
    V = np.zeros(env.nS)
    while True:
        # Stopping condition
        delta = 0
        # Update each state...
        for s in range(env.nS):
            # Do a one-step lookahead to find the best action
            A = one_step_lookahead(s, V)
            # 选择奖励值最高的数
            best_action_value = np.max(A)
            # Calculate delta across all states seen so far
            delta = max(delta, np.abs(best_action_value - V[s]))
            # Update the value function
            #V[s]使用最好的奖励值表示
            V[s] = best_action_value        
        # Check if we can stop
        # 如果奖励值不发生变化,跳出循环
        if delta < theta:
            break
    
    # Create a deterministic policy using the optimal value function
    # 获得当前位置对应的最佳移动方向
    policy = np.zeros([env.nS, env.nA])
    for s in range(env.nS):

        # One step lookahead to find the best action for this state
        A = one_step_lookahead(s, V)
        # 最好的方向
        best_action = np.argmax(A)
        # Always take the best action
        # s表示位置,best_action表示方向,用于后续的操作
        policy[s, best_action] = 1.0
    
    return policy, V

policy, v = value_iteration(env)

print("Policy Probability Distribution:")
print(policy)
print("")

print("Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):")
print(np.reshape(np.argmax(policy, axis=1), env.shape))
print("")

 

posted on 2018-12-07 12:14  python我的最爱  阅读(614)  评论(0编辑  收藏  举报