在机器学习中,一个 epoch 是指对整个训练数据集进行一次完整的训练。在训练神经网络时,一次完整的训练周期会经过所有的训练样本,然后根据模型的权重进行参数更新。
训练数据集通常被分成小批次(minibatches)进行处理,每个小批次包含一组训练样本。在一个 epoch 中,模型会逐批次地处理训练数据,计算损失并更新模型参数。经过所有的小批次处理后,一个 epoch 完成。
epoch 的数量是一个超参数,需要根据实际情况进行调整。训练过少的 epoch 可能导致模型没有足够的迭代次数来学到数据的模式,而训练过多的 epoch 可能导致过拟合(在训练数据上表现很好,但在未见过的数据上表现较差)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!