论文:https://arxiv.org/abs/1504.08083

github:https://github.com/rbgirshick/fast-rcnn

参考文档:https://blog.csdn.net/qq_45848817/article/details/127965649

 

 

快速区域的卷积网络方法(快速 R-CNN)用于对象检测

R-CNN的复杂性主要来自两个方面:一是需要针对大量的候选框分别进行计算;二是特征提取之后的分类器训练和位置回归,是几个独立步骤分别进行的

FaskRCNN就是改进了这两个问题

FastR-CNN主要有两点改进:ROIPool和多任务网络

 

 

Rol:regions of interest感兴趣的地区

FCs:fully connected layers,全连接层

框架介绍:同样使用SS(Selective Search)算法,不同于RCNN直接将图像分割成小矩形区域,Fast-RCNN先确定候选框位置,然后将整张图像送入卷积网络,一次性计算整张图像特征,获得Conv feature map,然后每一个RoI被池化成一个固定大小的feature map,feature map被两个全连接层拉伸成一个特征向量ROI。对于每一个RoI,经过FC层后得到的feature vector最终被分享:一个进行全连接之后用来做softmax回归,用来对RoI区域做物体识别,另一个经过全连接之后用来做b-box regression做修正定位,使得定位框更加精准。

ROIPool:池化

  通过对提取特征进行过滤,就是矩阵在缩小,将几个神经元的输出变为一个输出

  有最大池化和平均池化

多任务网络:
  不同与RCNN的SVM,将分类与回归网络放到一起训练,并且为了避免SVM分类器带来的单独训练与速度慢的缺点,使用了softmax函数进行分类
 
 
posted on   黑逍逍  阅读(36)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!



点击右上角即可分享
微信分享提示