吴恩达老师机器学习课程chapter08——降维

吴恩达老师机器学习课程chapter08——降维

本文是非计算机专业新手的自学笔记,高手勿喷。

本文仅作速查备忘之用,对应吴恩达(AndrewNg)老师的机器学期课程第十四章。

本章节只有结论,没有任何推演过程,仅作了解入门。



基本概念

降维操作可以压缩数据以节约内存,加速算法;还可以为可视化提供便利。

比如,从二维降维至一维:

比如,从三维降维至二维:


主成分分析法(Principal Component Analysis)

PCA要做的,是寻找到高维空间中,类似于图中红线,而不是图中洋红线,这样的平面。通过这些平面对数据进行降维操作。

样本在这些平面上的投影记作记作xapprox(i)

要最小化的是平方投影误差。这与回归算法是有区别的。下图中,左侧是回归算法,右侧是PCA算法:

操作

课程中只给出了PCA的操作步骤,没有任何推导:

首先,计算矩阵

Σ=1mi=1n(x(i))(x(i))T

之后,进行SVD操作,即奇值分解(Singular Value Decomposition)。这里没有说明具体操作。

得到U矩阵的形状为 n x m,取前 k列,得到新的矩阵——形状为n x k的Ureduce

z(i)=UreduceT×x(i)。完成降维操作。

主成分数k的选择

选择的K值应当使得

(average squared projection components)(total totalvariation in the deta)0.01

也就叫做 “ 保留99%的方差性 ”。95%、90%、85%也是常用的。

另有计算方法如下:

在奇值分解过程中还会得到n x n的S矩阵,sii表示S矩阵对角线元素。

K的选择需要满足:

1i=1kSiii=1nSii0.01

这里0.01与上一种方法的含义是一样的。


重构

重构指的是将降维过的数据还原回原本数据的过程。

压缩重现计算方法为 xapprox(i)=UreduceT×z(i)

  • PCA并不总是解决过拟合的好办法。
  • 先不使用PCA,之后在考察是否需要PCA。

posted on   木子但丁MuzziDante  阅读(89)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示