CSP模拟15

CSP模拟15


T1 CF1850G The Morning Star

水题 但是考场写挂了
直接写阶乘会 \(RE\)(这里\(A\)阶乘可以优化成两个数相乘)
可以分解为4种不同斜率的直线用 \(map\) 存(

点击查看代码
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
using namespace std;
#define ll long long
ll ans;
ll n,si1,si2,si3,si4;
ll num1[200010],num2[200010],num3[200010],num4[200010];
int work(){
    for(int i=1;i<=si1;i++){
        num1[i]=0;
    }
    for(int i=1;i<=si2;i++){
        num2[i]=0;
    }
    for(int i=1;i<=si3;i++){
        num3[i]=0;
    }
    for(int i=1;i<=si4;i++){
        num4[i]=0;
    }
    si1=0,si2=0,si3=0,si4=0;ans=0;
    map<ll,ll>s1,s2,s3,s4;
    scanf("%lld",&n);
    for(int i=1;i<=n;i++){
        ll x,y;
        scanf("%lld%lld",&x,&y);
        if(s1[y-x]==0){
            s1[y-x]=++si1;
        }
        if(s2[y+x]==0){
            s2[y+x]=++si2;
        }
        if(s3[x]==0){
            s3[x]=++si3;
        }
        if(s4[y]==0){
            s4[y]=++si4;
        }
        num1[s1[y-x]]++;
        num2[s2[y+x]]++;
        num3[s3[x]]++;
        num4[s4[y]]++;
    }
    for(int i=1;i<=si1;i++){
        if(num1[i]>=2)
        ans+=num1[i]*(num1[i]-1);
    }
    for(int i=1;i<=si2;i++){
        if(num2[i]>=2)
        ans+=num2[i]*(num2[i]-1);
    }
    for(int i=1;i<=si3;i++){
        if(num3[i]>=2)
        ans+=num3[i]*(num3[i]-1);
    }
    for(int i=1;i<=si4;i++){
        if(num4[i]>=2)
        ans+=num4[i]*(num4[i]-1);
    }
    printf("%lld\n",ans);
    return 0;
}
int main(){
    int t;
    scanf("%d",&t);
    while(t--) work();
    return 0;
}

T2 CF1582A Ntarsis' Set

我们可以发现,
\(a[n]=n\) 时 答案就是\(n*k+1\)
\(a[n]=n+1\) 时设不删除第 \(b\) 小的数,答案就是 \(n*(k-1)+b\)
删除第 \(k\) 小的数相当于让后面不会被删除的数的位置减一,考虑二分答案所在的位置,如果位置减到了零就意味着答案不合法。显然答案是满足单调性的。

点击查看代码
#include<iostream>
#include<cstdio>
using namespace std;
#define int long long
int n,k,a[200010],ans,an2,ma,top=1;
bool check(int x){
    int now=n;
    for(int i=1;i<=k;i++){
        while(a[now]>x)now--;
        x-=now;
    }
    return x>0;
}
void work(){
    //freopen("set_.in","r",stdin);
    scanf("%lld%lld",&n,&k);
    for(int i=1;i<=n;i++){
        scanf("%lld",&a[i]);
    }
    if(a[1]>1){
        printf("1\n");
        return;
    }
    int l=1,r=n*k+1;
    while(l<=r){
        int mid=(l+r)>>1;
        if(check(mid)){
            ans=mid;
            r=mid-1;
        }
        else l=mid+1;
    }
    printf("%lld\n",ans);
    return;
}
signed main(){
    int t;
    scanf("%lld",&t);
    while(t--) work();
    return 0;
}

T3 CF932E Team Work

\[\begin{aligned} F(n,m)&=\sum\limits_{i=1}^n{n\choose i}i^m\\ &=n\sum\limits_{i=1}^n{n-1\choose i-1}i^{m-1}\\ &=n\left(\sum\limits_{i=1}^n{n\choose i}i^{m-1}-\sum\limits_{i=1}^n{n-1\choose i}i^{m-1}\right)\\ &=n(F(n,m-1)-F(n-1,m-1)) \end{aligned} \]

边界为 \(f(n, 0) = 2^n - 1\),复杂度 \(\mathcal{O}(k^2)\)

除了排列组合这道题也可以使用第二类斯特林数做。

注意如果使用左移操作求 \(2\) 的整数次幂会发生溢出导致答案错误
递推要比记忆化搜索快的多。

记忆化搜索版

点击查看代码
#include<iostream>
#include<cstdio>
using namespace std;
#define int long long
int n,k,ans,jc[200010],fc[200010],inv[200010];
const int mod=1e9+7;
int dp[5010][5010];
int qpow(int x,int y){
    int an=1;
    while(y){
        if(y&1){
            an*=x;
            an%=mod;
        }
        x*=x;
        x%=mod;
        y>>=1;
    }
    return an;
}
int cc(int x,int y){
    if(x<y) return 0;
    return jc[x]*fc[y]%mod*fc[x-y]%mod;
}
void work(){
    jc[0]=jc[1]=1;
    inv[0]=inv[1]=1;
    fc[0]=fc[1]=1;
    for(long long i=2;i<=200000;i++){
        jc[i]=jc[i-1]*i%mod;
        inv[i]=((mod-mod/i*inv[mod%i])%mod+mod)%mod;
        fc[i]=fc[i-1]*inv[i]%mod;
    }
    for(int i=1;i<=n;i++){
        ans+=cc(n,i)*qpow(i,k)%mod;
        ans%=mod;
    }
    printf("%lld",ans);
    return;
}
int dfs(int x,int y){
    if(dp[x-(n-k)][y]!=0) return dp[x-(n-k)][y];
    if(y==0) return dp[x-(n-k)][y]=qpow(2,x)-1; 
    return dp[x-(n-k)][y]=x*((dfs(x,y-1)-dfs(x-1,y-1)+mod)%mod)%mod;
}
signed main(){
    scanf("%lld%lld",&n,&k);
    if(n<k) work();
    else printf("%lld",dfs(n,k));
    return 0;
}

递推版

点击查看代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define int long long
int n,k,ans,jc[200010],fc[200010],inv[200010];
const int mod=1e9+7;
int dp[5010][5010];
int qpow(int x,int y){
    int an=1;
    while(y){
        if(y&1){
            an*=x;
            an%=mod;
        }
        x*=x;
        x%=mod;
        y>>=1;
    }
    return an;
}
int cc(int x,int y){
    if(x<y) return 0;
    return jc[x]*fc[y]%mod*fc[x-y]%mod;
}
void work(){
    jc[0]=jc[1]=1;
    inv[0]=inv[1]=1;
    fc[0]=fc[1]=1;
    for(long long i=2;i<=200000;i++){
        jc[i]=jc[i-1]*i%mod;
        inv[i]=((mod-mod/i*inv[mod%i])%mod+mod)%mod;
        fc[i]=fc[i-1]*inv[i]%mod;
    }
    for(int i=1;i<=n;i++){
        ans+=cc(n,i)*qpow(i,k)%mod;
        ans%=mod;
    }
    printf("%lld",ans);
    return;
}
void  work2(){
    for(int i=0;i<=k;i++) dp[i][0]=qpow(2,i+n-k)-1;
    for(int i=1;i<=k;i++){
        for(int j=1;j<=k;j++){
            dp[i][j]=(i+n-k)*(dp[i][j-1]-dp[i-1][j-1]+mod)%mod;
        }
    }
    printf("%lld",dp[k][k]);
}
signed main(){
    scanf("%lld%lld",&n,&k);
    if(n<k) work();
    else work2();
    return 0;
}

CF1188D T4 Make Equal

code

点击查看代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n;
#define ll long long
ll a[100010],dp[70][100010],b[100010];
ll id[100010],sum[100010][5];
bool cmp(int x,int y){
    return b[x]<b[y];
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%lld",&a[i]);
    }
    sort(a+1,a+n+1);
    for(int i=1;i<=n;i++){
        a[i]=a[n]-a[i];
    }
    memset(dp,0x3f,sizeof(dp));
    dp[0][0]=0;
    for(int i=0;i<=60;i++){
        memset(sum,0,sizeof(sum));
        for(int j=1;j<=n;j++){
            b[j]=a[j]&((1ll<<i)-1);
            id[j]=j;
        }
        sort(id+1,id+n+1,cmp);
        for(int j=1;j<=n;j++){
            sum[j][0]=sum[j-1][0];
            sum[j][1]=sum[j-1][1];
            sum[j][a[id[j]]>>i&1]++;
        }
        for(int j=0;j<=n;j++){
            int an1=sum[n-j][1]+sum[n][0]-sum[n-j][0];
            int an2=sum[n][1]-sum[n-j][1];
            dp[i+1][an2]=min(dp[i+1][an2],dp[i][j]+an1);
			an1=sum[n-j][0]+sum[n][1]-sum[n-j][1];
            an2=n-sum[n-j][0];
			dp[i+1][an2]=min(dp[i+1][an2],dp[i][j]+an1);
        }
    }
    printf("%d",dp[61][0]);
    return 0;
}
posted @ 2023-08-07 19:00  muzqingt  阅读(48)  评论(1编辑  收藏  举报