C# 线程同步
public class TestThreading { private System.Object lockThis = new System.Object(); public void Process() { lock (lockThis) { // Access thread-sensitive resources. } } }
2.利用Monitor类, 如:
System.Object obj = (System.Object)x; System.Threading.Monitor.Enter(obj); try { DoSomething(); } finally { System.Threading.Monitor.Exit(obj); }
3.利用AutoResetEvent和ManualResetEvent,比如:
static AutoResetEvent autoEvent; static void DoWork() { Console.WriteLine(" worker thread started, now waiting on event..."); autoEvent.WaitOne(); Console.WriteLine(" worker thread reactivated, now exiting..."); } static void Main() { autoEvent = new AutoResetEvent(false); Console.WriteLine("main thread starting worker thread..."); Thread t = new Thread(DoWork); t.Start(); Console.WriteLine("main thread sleeping for 1 second..."); Thread.Sleep(1000); Console.WriteLine("main thread signaling worker thread..."); autoEvent.Set(); }
4.利用Mutext, Mutex主要用于进程间同步,进程内尽量使用Monitor
class Test { // Create a new Mutex. The creating thread does not own the // Mutex. private static Mutex mut = new Mutex(); private const int numIterations = 1; private const int numThreads = 3; static void Main() { // Create the threads that will use the protected resource. for(int i = 0; i < numThreads; i++) { Thread myThread = new Thread(new ThreadStart(MyThreadProc)); myThread.Name = String.Format("Thread{0}", i + 1); myThread.Start(); } // The main thread exits, but the application continues to // run until all foreground threads have exited. } private static void MyThreadProc() { for(int i = 0; i < numIterations; i++) { UseResource(); } } // This method represents a resource that must be synchronized // so that only one thread at a time can enter. private static void UseResource() { // Wait until it is safe to enter. mut.WaitOne(); Console.WriteLine("{0} has entered the protected area", Thread.CurrentThread.Name); // Place code to access non-reentrant resources here. // Simulate some work. Thread.Sleep(500); Console.WriteLine("{0} is leaving the protected area\r\n", Thread.CurrentThread.Name); // Release the Mutex. mut.ReleaseMutex(); } }5.利用Interlocked, 比如:class MyInterlockedExchangeExampleClass { //0 for false, 1 for true. private static int usingResource = 0; private const int numThreadIterations = 5; private const int numThreads = 10; static void Main() { Thread myThread; Random rnd = new Random(); for(int i = 0; i < numThreads; i++) { myThread = new Thread(new ThreadStart(MyThreadProc)); myThread.Name = String.Format("Thread{0}", i + 1); //Wait a random amount of time before starting next thread. Thread.Sleep(rnd.Next(0, 1000)); myThread.Start(); } } private static void MyThreadProc() { for(int i = 0; i < numThreadIterations; i++) { UseResource(); //Wait 1 second before next attempt. Thread.Sleep(1000); } } //A simple method that denies reentrancy. static bool UseResource() { //0 indicates that the method is not in use. if(0 == Interlocked.Exchange(ref usingResource, 1)) { Console.WriteLine("{0} acquired the lock", Thread.CurrentThread.Name); //Code to access a resource that is not thread safe would go here. //Simulate some work Thread.Sleep(500); Console.WriteLine("{0} exiting lock", Thread.CurrentThread.Name); //Release the lock Interlocked.Exchange(ref usingResource, 0); return true; } else { Console.WriteLine(" {0} was denied the lock", Thread.CurrentThread.Name); return false; } } }6.利用ReaderWriterLockSlim, 比如:public class Test { // Declaring the ReaderWriterLock at the class level // makes it visible to all threads. static ReaderWriterLock rwl = new ReaderWriterLock(); // For this example, the shared resource protected by the // ReaderWriterLock is just an integer. static int resource = 0; const int numThreads = 26; static bool running = true; static Random rnd = new Random(); // Statistics. static int readerTimeouts = 0; static int writerTimeouts = 0; static int reads = 0; static int writes = 0; public static void Main(string[] args) { // Start a series of threads. Each thread randomly // performs reads and writes on the shared resource. Thread[] t = new Thread[numThreads]; for (int i = 0; i < numThreads; i++) { t[i] = new Thread(new ThreadStart(ThreadProc)); t[i].Name = new String(Convert.ToChar(i + 65), 1); t[i].Start(); if (i > 10) Thread.Sleep(300); } // Tell the threads to shut down, then wait until they all // finish. running = false; for (int i = 0; i < numThreads; i++) { t[i].Join(); } // Display statistics. Console.WriteLine("\r\n{0} reads, {1} writes, {2} reader time-outs, {3} writer time-outs.", reads, writes, readerTimeouts, writerTimeouts); Console.WriteLine("Press ENTER to exit."); Console.ReadLine(); } static void ThreadProc() { // As long as a thread runs, it randomly selects // various ways to read and write from the shared // resource. Each of the methods demonstrates one // or more features of ReaderWriterLock. while (running) { double action = rnd.NextDouble(); if (action < .8) ReadFromResource(10); else if (action < .81) ReleaseRestore(50); else if (action < .90) UpgradeDowngrade(100); else WriteToResource(100); } } // Shows how to request and release a reader lock, and // how to handle time-outs. static void ReadFromResource(int timeOut) { try { rwl.AcquireReaderLock(timeOut); try { // It is safe for this thread to read from // the shared resource. Display("reads resource value " + resource); Interlocked.Increment(ref reads); } finally { // Ensure that the lock is released. rwl.ReleaseReaderLock(); } } catch (ApplicationException) { // The reader lock request timed out. Interlocked.Increment(ref readerTimeouts); } } // Shows how to request and release the writer lock, and // how to handle time-outs. static void WriteToResource(int timeOut) { try { rwl.AcquireWriterLock(timeOut); try { // It is safe for this thread to read or write // from the shared resource. resource = rnd.Next(500); Display("writes resource value " + resource); Interlocked.Increment(ref writes); } finally { // Ensure that the lock is released. rwl.ReleaseWriterLock(); } } catch (ApplicationException) { // The writer lock request timed out. Interlocked.Increment(ref writerTimeouts); } } // Shows how to request a reader lock, upgrade the // reader lock to the writer lock, and downgrade to a // reader lock again. static void UpgradeDowngrade(int timeOut) { try { rwl.AcquireReaderLock(timeOut); try { // It is safe for this thread to read from // the shared resource. Display("reads resource value " + resource); Interlocked.Increment(ref reads); // If it is necessary to write to the resource, // you must either release the reader lock and // then request the writer lock, or upgrade the // reader lock. Note that upgrading the reader lock // puts the thread in the write queue, behind any // other threads that might be waiting for the // writer lock. try { LockCookie lc = rwl.UpgradeToWriterLock(timeOut); try { // It is safe for this thread to read or write // from the shared resource. resource = rnd.Next(500); Display("writes resource value " + resource); Interlocked.Increment(ref writes); } finally { // Ensure that the lock is released. rwl.DowngradeFromWriterLock(ref lc); } } catch (ApplicationException) { // The upgrade request timed out. Interlocked.Increment(ref writerTimeouts); } // When the lock has been downgraded, it is // still safe to read from the resource. Display("reads resource value " + resource); Interlocked.Increment(ref reads); } finally { // Ensure that the lock is released. rwl.ReleaseReaderLock(); } } catch (ApplicationException) { // The reader lock request timed out. Interlocked.Increment(ref readerTimeouts); } } // Shows how to release all locks and later restore // the lock state. Shows how to use sequence numbers // to determine whether another thread has obtained // a writer lock since this thread last accessed the // resource. static void ReleaseRestore(int timeOut) { int lastWriter; try { rwl.AcquireReaderLock(timeOut); try { // It is safe for this thread to read from // the shared resource. Cache the value. (You // might do this if reading the resource is // an expensive operation.) int resourceValue = resource; Display("reads resource value " + resourceValue); Interlocked.Increment(ref reads); // Save the current writer sequence number. lastWriter = rwl.WriterSeqNum; // Release the lock, and save a cookie so the // lock can be restored later. LockCookie lc = rwl.ReleaseLock(); // Wait for a random interval (up to a // quarter of a second), and then restore // the previous state of the lock. Note that // there is no time-out on the Restore method. Thread.Sleep(rnd.Next(250)); rwl.RestoreLock(ref lc); // Check whether other threads obtained the // writer lock in the interval. If not, then // the cached value of the resource is still // valid. if (rwl.AnyWritersSince(lastWriter)) { resourceValue = resource; Interlocked.Increment(ref reads); Display("resource has changed " + resourceValue); } else { Display("resource has not changed " + resourceValue); } } finally { // Ensure that the lock is released. rwl.ReleaseReaderLock(); } } catch (ApplicationException) { // The reader lock request timed out. Interlocked.Increment(ref readerTimeouts); } } // Helper method briefly displays the most recent // thread action. Comment out calls to Display to // get a better idea of throughput. static void Display(string msg) { Console.Write("Thread {0} {1}. \r", Thread.CurrentThread.Name, msg); } }
https://muzizongheng.blog.csdn.net/