UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119
题目大意:
Morley定理是这样定义的,做三角形ABC每个内角的三等分线,相交成三角形DEF,则DEF是等边三角形。如图,你的任务是根据A,B,C三个点的位置确定D、E、F的位置。
思路:
把BC边旋转三分之一的角ABC,CB边旋转三分之一的角ACB,然后求交点D就出来了。其他的同理。
PS:作者的向量类写得不错,嗯,等我回学校了要把c++ primer plus里的向量模版好好看看
#include<cstdio> #include<cmath> struct point { double x,y; point(double x=0,double y=0): x(x),y(y){} }; typedef point Vector; Vector operator +(point a,point b) { return Vector(a.x+b.x,a.y+b.y); } Vector operator *(point a,double b) { return Vector(a.x*b,a.y*b); } Vector operator -(point a,point b) { return Vector(a.x-b.x,a.y-b.y); } double dot(Vector a,Vector b) { return a.x*b.x+a.y*b.y; } double cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; } double len(Vector a) { return sqrt(a.x*a.x+a.y*a.y); } Vector rotate(Vector a,double rad) { return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); } point getans(point p,Vector v,point q,Vector w){ Vector u= p-q; double t=cross(w,u) / cross(v,w); return p+v*t; } point getPoint(point a,point b,point c) { Vector bc=c-b; Vector ba=a-b; double x=acos( dot(ba,bc) / len(bc) / len(ba) ); Vector bd= rotate(bc,x/3); Vector ca=a-c; Vector cb=b-c; x=acos( dot(cb,ca) / len(cb) / len(ca) ); Vector cd=rotate(cb,-x/3); return getans(b,bd,c,cd); } int main() { int T; scanf("%d",&T); point a,b,c,d,e,f; while(T--) { scanf("%lf%lf",&a.x,&a.y); scanf("%lf%lf",&b.x,&b.y); scanf("%lf%lf",&c.x,&c.y); d=getPoint(a,b,c); e=getPoint(b,c,a); f=getPoint(c,a,b); printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",d.x,d.y,e.x,e.y,f.x,f.y); } return 0; }
新 blog : www.hrwhisper.me