UVA 10943 - How do you add? 递推

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1884

题目大意:

把K个不超过N的非负整数加起来,使得他们的和为N,有多少种方法?比如N=5,K=2,有6种方法。即0+5,1+4,2+3,3+2,4+1,5+0.

输入N和K,求方法总数除以10^6的余数

思路:

递推,从(n-1,k)种的解+上1不就是答案了么?同理从(n,k-1)中加上个0不也是答案么,

所以有:ans[i][j]=(ans[i][j-1]+ans[i-1][j])%mod;

OK注意初始化,(1,k)的解为k,我们可以1个1,k-1个0,组成的全排列。而(n,1)为1,只能选自己嘛。


#include<cstdio>
const int MAXN=100+10;
const int mod=1000000;  
int ans[MAXN][MAXN];
int main()
{	
	for(int i=1;i<=100;i++)
	{
		ans[1][i]=i;
		ans[i][1]=1; 	
	}

	for(int i=2;i<=100;i++)
		for(int j=2;j<=100;j++)	
			ans[i][j]=(ans[i][j-1]+ans[i-1][j])%mod;	

	int n,k;
	while(scanf("%d%d",&n,&k),n||k)
	{
		printf("%d\n",ans[n][k]);
	}
	return 0;
}


posted @ 2014-02-03 21:15  hr_whisper  阅读(148)  评论(0编辑  收藏  举报