POJ 1273 Drainage Ditches 最大流
http://poj.org/problem?id=1273
题目大意:
给你N条路径(有重边),和M个点,求以1为源点,M为汇点的最大流。
思路:
第一题最大流问题,直接用Edmonds-Karp算法即可
#include<cstdio> #include<cstring> #include<queue> #include<algorithm> using namespace std; const int MAXN = 1<<8; int map[MAXN][MAXN]; int flow[MAXN]; int pre[MAXN]; int n, m; int bfs(int s,int t) { memset(pre, -1, sizeof(pre)); queue<int> q; q.push(s); pre[s] = 0; flow[s] = 0x3ffffff; while (!q.empty()) { int cur = q.front(); q.pop(); for (int i = 1; i <= m; i++) { if (map[cur][i] > 0 && pre[i] == -1) { flow[i] = min(flow[cur],map[cur][i]); pre[i] = cur; q.push(i); } } } return pre[t] == -1 ? -1 : flow[t]; } int maxFlow(int s,int t) { int ans = 0; int curFlow=0; while ((curFlow=bfs(s,t)) !=-1) { int cur = t; while (cur != s) { map[pre[cur]][cur] -= curFlow; map[cur][pre[cur]] += curFlow; cur = pre[cur]; } ans += curFlow; } return ans; } int main() { while (~scanf("%d%d", &n, &m)) { memset(map, 0, sizeof(map)); for (int i = 0; i < n; i++) { int from, to, val; scanf("%d%d%d", &from, &to, &val); map[from][to] += val; } printf("%d\n", maxFlow(1,m)); } }
新 blog : www.hrwhisper.me