js图的数据结构处理----邻链表,广度优先搜索,最小路径,深度优先搜索,探索时间拓扑
2018-06-21 12:01 muamaker 阅读(448) 评论(0) 编辑 收藏 举报 //邻居连表
//先加入各顶点,然后加入边
//队列 var Queue = (function(){ var item = new WeakMap(); class Queue{ constructor(){ item.set(this,[]); } enqueue(ele){ var ls = item.get(this); ls.push(ele); } dequeue(){ var ls = item.get(this); return ls.shift(); } size(){ var ls = item.get(this); return ls.length; } front(){ var ls = item.get(this); return ls[0]; } isEmpty(){ var ls = item.get(this); return !ls.length; } print(){ var ls = item.get(this); for(var i = 0; i < ls.length; i++){ console.log(`${ls[i]}`); } } } return Queue; })(); //深度优先搜索 //广度优先搜索 function Graph(){ var vertices = []; //存储所有的顶点 var adjList = {}; //存储所有顶点的相邻顶点 this.addVertex = function(v){ if(!adjList[v]){ vertices.push(v); adjList[v] = []; }else{ throw new Error("该顶点已经存在"); } }; var initializeColor = function(){ var color = {}; for(var i = 0; i < vertices.length; i++){ color[vertices[i]] = 'white'; } return color; } this.addEdge = function(v,w){ if(adjList[v] && adjList[w]){ adjList[v].push(w); adjList[w].push(v); }else{ throw new Error("链接不存在的顶点"); } }; this.toString = function(){ var s = ''; for (var i=0; i<vertices.length; i++){ //{10} s += vertices[i] + ' -> '; var neighbors = adjList[vertices[i]]; //{11} for (var j=0; j<neighbors.length; j++){ //{12} s += neighbors[j] + ' '; } s += '\n'; //{13} } return s; }; this.print = function(){ console.log(this.toString()); }; //广度优先搜索,寻找每个点 //搜索每个点的相邻点 //1、初始化,所有的顶点状态为 white,即没有遍历到 //2、通过该点,拿到相邻点的数组,遍历相邻点 //3、如果相邻点是white,则变灰(表示发现该节点)。并加入队列 //4、当相邻的都遍历完成,将自己变成黑色(表示已经探索完成该节点),进入队列下一次的循环 this.bfs = function(v,callback){ var color = initializeColor(); queue = new Queue(); queue.enqueue(v); while(!queue.isEmpty()){ var u = queue.dequeue(); neighbors = adjList[u]; color[u] = 'grey'; for(var i = 0; i < neighbors.length; i++){ var w = neighbors[i]; if(color[w] === 'white'){ color[w] = 'grey'; queue.enqueue(w); } } color[u] = "black"; if(callback){ callback(u); } } }; //广度优先算法,计算每个顶点的距离 this.BFS = function(v){ var color = initializeColor(); queue = new Queue(); queue.enqueue(v); d = []; //距离列表 pred = []; //前溯点 for (var i=0; i<vertices.length; i++){ d[vertices[i]] = 0; pred[vertices[i]] = null; } while(!queue.isEmpty()){ var u = queue.dequeue(); neighbors = adjList[u]; color[u] = 'grey'; for(var i = 0; i < neighbors.length; i++){ var w = neighbors[i]; if(color[w] === 'white'){ color[w] = 'grey'; d[w] = d[u] + 1; pred[w] = u; queue.enqueue(w); } } color[u] = "black"; } return { distances: d, predecessors: pred } } this.getPath = function(u){ //打印最短路径 //回溯之前的相邻点 var shortestPath = this.BFS(u); var fromVertex = vertices[0]; for (var i=1; i<vertices.length; i++){ var toVertex = vertices[i], path = []; for (var v=toVertex; v!== fromVertex; v=shortestPath.predecessors[v]) { path.push(v); } path.push(fromVertex); var s = path.join("-"); console.log(s); } } //深度优先算法 this.dfs = function(callback){ var color = initializeColor(); for(var i = 0; i < vertices.length; i++){ if(color[vertices[i]] === 'white'){ dfsVisit(vertices[i], color, callback); } } } function dfsVisit(u,color,callback){ color[u] = 'grey'; if(callback){ callback(u); } var neighbors = adjList[u]; for(var i = 0; i < neighbors.length; i++){ var w = neighbors[i]; if(color[w] === 'white'){ dfsVisit(w,color,callback) } } color[u] = "black"; } //深度搜索,发现时间(标记为灰色)和完成探索时间(标记为黑色) //将发现时间倒序排列,即可得到拓扑图 var time = 0; this.DFS = function(){ var color = initializeColor(), d = [], f = [], p = [], time = 0; for(var i = 0; i < vertices.length; i++){ f[vertices[i]] = 0; d[vertices[i]] = 0; p[vertices[i]] = null; } for(var i = 0; i < vertices.length; i++){ if(color[vertices[i]] === 'white'){ DFSVisit(vertices[i],color,d,f,p); } } return { discovery:d, finished:f, predecessors:p } } function DFSVisit(u,color,d,f,p){ console.log("discovered" + u); color[u] = 'grey'; d[u] = ++time; var neighbors = adjList[u]; for(var i = 0; i < neighbors.length; i++){ var w = neighbors[i]; if(color[w] === 'white'){ p[w] = u; DFSVisit(w,color,d,f,p); } } color[u] = 'block'; f[u] = ++time; console.log("explored"+u); } } var graph = new Graph(); var myVertices = ['A','B','C','D','E','F','G','H','I']; //{7} for (var i=0; i<myVertices.length; i++){ //{8} graph.addVertex(myVertices[i]); } graph.addEdge('A', 'B'); //{9} graph.addEdge('A', 'C'); graph.addEdge('A', 'D'); graph.addEdge('C', 'D'); graph.addEdge('C', 'G'); graph.addEdge('D', 'G'); graph.addEdge('D', 'H'); graph.addEdge('B', 'E'); graph.addEdge('B', 'F'); graph.addEdge('E', 'I'); /* graph.bfs("A",function(cnode){ console.log(cnode); }) console.log(graph.BFS("A")); graph.getPath('A'); graph.dfs(function(cnode){ console.log(cnode); });*/ console.log(graph.DFS()); /* 如果要计算加权图中的最短路径(例如城市之间最短距离)广度优先搜索未必合适。 * Dijkstra算法解决了单源最短路径问题。 Bellman-Ford算法解决了边权值为负的 单源最短路径问题。 A*搜索算法解决了求仅一对顶点间的最短路径问题,它用经验法则来加速搜 索过程。 Floyd-Warshall算法解决了求所有顶点对间的最短路径这一问题。 * * */