4 Atomic
AtomIcLong介绍:
递增操作代码:
public final long incrementAndGet() { return unsafe.getAndAddLong(this, valueOffset, 1L) + 1L; }
递减操作代码:
public final long decrementAndGet() { return unsafe.getAndAddLong(this, valueOffset, -1L) - 1L; }
获取当前线程的volatitle值,加1后更新,直至成功。如果不成功就一直自旋。根据CAS算法原理,如果是多个线程在进行,那么这里就只有一个线程能执行成功,其它不成功的都在自旋。
public final long getAndAddLong(Object var1, long var2, long var4) { long var6; do { //获取当前线程的value值 var6 = this.getLongVolatile(var1, var2); } while(!this.compareAndSwapLong(var1, var2, var6, var6 + var4)); return var6; }
AtomicLong原子操作类使用CAS非阻塞算法,性能要比使用synchronized关键字要更好。但是在高并发情况下AtomicLong还会存在性能问题。JDK 8提供了一个在高并发下性能更好的LongAdder类。
LongAdder介绍:
使用AtomicLong时,在高并发下大量线程会同时去竞争更新同一个原子变量,但是由于同时只有一个线程的CAS操作会成功,这就造成了大量线程竞争失败后,会通过无限循环不断进行自旋尝试CAS的操作,而这会白白浪费CPU资源。
JDK 8新增了一个原子性递增或者递减类LongAdder用来克服在高并发下使用AtomicLong的缺点。既然AtomicLong的性能瓶颈是由于过多线程同时去竞争一个变量的更新而产生的,那么如果把一个变量分解为多个变量,让同样多的线程去竞争多个资源,是不是就解决了性能问题?
使用AtomicLong时,是多个线程同时竞争同一个原子变量。
使用LongAdder时,则是在内部维护多个Cell变量,每个Cell里面有一个初始值为0的long型变量,这样,在同等并发量的情况下,争夺单个变量更新操作的线程量会减少,这变相地减少了争夺共享资源的并发量。另外,多个线程在争夺同一个Cell原子变量时如果失败了,它并不是在当前Cell变量上一直自旋CAS重试,而是尝试在其他Cell的变量上进行CAS尝试,这个改变增加了当前线程重试CAS成功的可能性。最后,在获取LongAdder当前值时,是把所有Cell变量的value值累加后再加上base返回的。
LongAdder维护了一个延迟初始化的原子性更新数组(默认情况下Cell数组是null)和一个基值变量base。由于Cells占用的内存是相对比较大的,所以一开始并不创建它,而是在需要时创建,也就是惰性加载。当一开始判断Cell数组是null并且并发线程较少时,所有的累加操作都是对base变量进行的。保持Cell数组的大小为2的N次方,在初始化时Cell数组中的Cell元素个数为2,数组里面的变量实体是Cell类型。Cell类型是AtomicLong的一个改进,用来减少缓存的争用,也就是解决伪共享问题。对于大多数孤立的多个原子操作进行字节填充是浪费的,因为原子性操作都是无规律地分散在内存中的(也就是说多个原子性变量的内存地址是不连续的),多个原子变量被放入同一个缓存行的可能性很小。但是原子性数组元素的内存地址是连续的,所以数组内的多个元素能经常共享缓存行,因此这里使用@sun.misc.Contended注解对Cell类进行字节填充,这防止了数组中多个元素共享一个缓存行,在性能上是一个提升。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(1)