mthoutai

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

题意:给你一个无向图,如今要求你把边改成有向的。 使得入度为0的点最少,输出有多少个点入度为0

思路:脑补一波结论。假设有环的话显然没有点入度为0,其余则至少有一个点入度为0,然后就DFS一波就能够了


#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <set>
#include <ctime>
#include <cmath>
#include <cctype>
using namespace std;
#define maxn 100000+1000
#define LL long long
int cas=1,T;
vector<int> e[maxn];
int vis[maxn];
int flag=0;
void dfs(int u,int fa)
{
	if (vis[u])
	{
		flag=1;
		return;
	}
	vis[u]=1;
	for (int i=0;i<e[u].size();i++)
	{
		int v = e[u][i];
		if (v==fa)
			continue;
		dfs(v,u);
	}
}
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	for (int i = 1;i<=m;i++)
	{
		int u,v;
		scanf("%d%d",&u,&v);
		e[u].push_back(v);
		e[v].push_back(u);
	}
	int ans = 0;
    for (int i = 1;i<=n;i++)
	{
		if (!vis[i])
		{
                        flag = 0;
			dfs(i,-1);
			if (!flag)
				ans++;
		}
	}
	printf("%d\n",ans);
	//freopen("in","r",stdin);
	//scanf("%d",&T);
	//printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);
	return 0;
}

Description

Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.

The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).

In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.

Help the Ministry of Transport to find the minimum possible number of separate cities after the reform.

Input

The first line of the input contains two positive integers, n and m — the number of the cities and the number of roads in Berland (2 ≤ n ≤ 100 0001 ≤ m ≤ 100 000).

Next m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi (1 ≤ xi, yi ≤ nxi ≠ yi), where xi and yi are the numbers of the cities connected by the i-th road.

It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.

Output

Print a single integer — the minimum number of separated cities after the reform.

Sample Input

Input
4 3
2 1
1 3
4 3
Output
1
Input
5 5
2 1
1 3
2 3
2 5
4 3
Output
0
Input
6 5
1 2
2 3
4 5
4 6
5 6
Output
1

Hint

In the first sample the following road orientation is allowed: .

The second sample: .

The third sample: .



posted on 2017-07-31 08:12  mthoutai  阅读(215)  评论(0编辑  收藏  举报