Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 20107 Accepted Submission(s): 6638
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8HintHuge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)
Recommend
/* 题意:n个数划分为m个集合,求集合最大值 思路:dp[i][j]代表 前i个数划分为j个集合的最大值 那么转移方程 dp[i][j]=max(dp[k][j-1],dp[i-1][j])+a[i] j-1=<k<=i 这里的j能够滚动来节约空间 */ #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<stack> #include<vector> #include<set> #include<map> #define L(x) (x<<1) #define R(x) (x<<1|1) #define MID(x,y) ((x+y)>>1) #define debug printf("%d\n",bug++) #define eps 1e-8 typedef __int64 ll; using namespace std; #define INF 0x3f3f3f3f #define N 1000005 ll dp[N][2]; int bug; int m,n; int a[N]; int main() { int i,j; // freopen("H:/in.txt","r",stdin); while(~scanf("%d%d",&m,&n)) { bug=0; for(i=1;i<=n;i++) scanf("%d",&a[i]); for(i=0;i<=n;i++) dp[i][0]=dp[i][1]=-1111111111111; dp[0][0]=dp[0][1]=0; int cur=0; for(i=1;i<=m;i++) { dp[i][cur]=dp[i-1][cur^1]+a[i]; ll ma=dp[i-1][cur^1]; //前i-1个数组合成i-1个集合的最大值 for(j=i+1;j<=n;j++) { ma=max(dp[j-1][cur^1],ma); dp[j][cur]=max(ma,dp[j-1][cur])+a[j]; //前j-1个数组合成i-1个集合的最大值 前j-1个组合成i个集合加上这个数 } cur^=1; } ll ans=-1111111111111; cur^=1; for(i=m;i<=n;i++) if(dp[i][cur]>ans) ans=dp[i][cur]; printf("%I64d\n",ans); } return 0; }