做数据分析,首先是要熟悉和理解数据。所以掌握一个趁手的可视化工具是很重要的,否则对数据连个主要的感性认识都没有,怎样进行下一步的design
还有一个非常棒的资料 Matplotlib Tutorial(译)
使用python绘制动态图的四个栗子:
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() axes1 = fig.add_subplot(111) line, = axes1.plot(np.random.rand(10)) #由于update的參数是调用函数data_gen,所以第一个默认參数不能是framenum def update(data): line.set_ydata(data) return line, # 每次生成10个随机数据 def data_gen(): while True: yield np.random.rand(10) ani = animation.FuncAnimation(fig, update, data_gen, interval=2*1000) plt.show()
第二个样例使用list(metric),每次从metric中取一行数据作为參数送入update中:
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation start = [1, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0] metric =[[0.03, 0.86, 0.65, 0.34, 0.34, 0.02, 0.22, 0.74, 0.66, 0.65], [0.43, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0.55], [0.66, 0.75, 0.01, 0.94, 0.72, 0.77, 0.20, 0.66, 0.81, 0.52] ] fig = plt.figure() window = fig.add_subplot(111) line, = window.plot(start) #假设是參数是list,则默认每次取list中的一个元素,即metric[0],metric[1],... def update(data): line.set_ydata(data) return line, ani = animation.FuncAnimation(fig, update, metric, interval=2*1000) plt.show()
第三个样例:
import numpy as np from matplotlib import pyplot as plt from matplotlib import animation # First set up the figure, the axis, and the plot element we want to animate fig = plt.figure() ax = plt.axes(xlim=(0, 2), ylim=(-2, 2)) line, = ax.plot([], [], lw=2) # initialization function: plot the background of each frame def init(): line.set_data([], []) return line, # animation function. This is called sequentially # note: i is framenumber def animate(i): x = np.linspace(0, 2, 1000) y = np.sin(2 * np.pi * (x - 0.01 * i)) line.set_data(x, y) return line, # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, animate, init_func=init, frames=200, interval=20, blit=True) #anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264']) plt.show()
第四个样例:
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # 每次产生一个新的坐标点 def data_gen(): t = data_gen.t cnt = 0 while cnt < 1000: cnt+=1 t += 0.05 yield t, np.sin(2*np.pi*t) * np.exp(-t/10.) data_gen.t = 0 # 画图 fig, ax = plt.subplots() line, = ax.plot([], [], lw=2) ax.set_ylim(-1.1, 1.1) ax.set_xlim(0, 5) ax.grid() xdata, ydata = [], [] # 由于run的參数是调用函数data_gen,所以第一个參数能够不是framenum:设置line的数据,返回line def run(data): # update the data t,y = data xdata.append(t) ydata.append(y) xmin, xmax = ax.get_xlim() if t >= xmax: ax.set_xlim(xmin, 2*xmax) ax.figure.canvas.draw() line.set_data(xdata, ydata) return line, # 每隔10秒调用函数run,run的參数为函数data_gen, # 表示图形仅仅更新须要绘制的元素 ani = animation.FuncAnimation(fig, run, data_gen, blit=True, interval=10, repeat=False) plt.show()
最后一个:
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation #第一个參数必须为framenum def update_line(num, data, line): line.set_data(data[...,:num]) return line, fig1 = plt.figure() data = np.random.rand(2, 15) l, = plt.plot([], [], 'r-') plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel('x') plt.title('test') #framenum从1添加大25后,返回再次从1添加到25,再返回... line_ani = animation.FuncAnimation(fig1, update_line, 25,fargs=(data, l),interval=50, blit=True) #等同于 #line_ani = animation.FuncAnimation(fig1, update_line, frames=25,fargs=(data, l), # interval=50, blit=True) #忽略frames參数,framenum会从1一直添加下去知道无穷 #因为frame达到25以后,数据不再改变,所以你会发现到达25以后图形不再变化了 #line_ani = animation.FuncAnimation(fig1, update_line, fargs=(data, l), # interval=50, blit=True) plt.show()