mthoutai

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

一:概念

首先简要介绍一下AC自己主动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之中的一个。一个常见的样例就是给出n个单词,再给出一段文章(长度是m),让你找出有多少个单词在文章里出现过。

要搞懂AC自己主动机。先得有字典树Trie的基础知识(也有人说需要KMP的知识,我认为暂且不要理会这个。

可是在看这篇文章之前,Trie字典树,你是必需要先搞懂,假设你还不理解Trie,请參考http://blog.csdn.net/laojiu_/article/details/50838421)。

与其它字符匹配不同,KMP算法是单模式串的字符匹配算法,AC自己主动机是多模式串的字符匹配算法。匹配时间复杂度是O(N)。线性复杂度!



二:算法过程(三步走)

举个样例,假如如今给出5个模式串:say she shr he her 

主串是:yasherhs

如今问你,这5个模式串有几个出如今主串里的?

OK,如今就拿这个样例来完毕这个算法的过程。

第一步:构建Trie树,这非常easy的了。

构建好后。出现下图:



第二步:构建失败指针

构建失败指针是AC自己主动机的核心所在,玩转了它也就玩转了AC自己主动机,失败指针就是。当我的主串在trie树中进行匹配的时候,假设当前节点不能再继续进行匹配。那么我们就会走到当前节点的fail节点继续进行匹配。

构造失败指针的过程概括起来就一句话:对于root的儿子节点。fail指针直接指向root,其它的全部节点(用到了BFS和队列),设这个节点上的字母为C。沿着它父亲的失败指针走。直到走到一个节点,它的儿子中也有字母为C的节点。然后把当前节点的失败指针指向那个字母为C的节点。

假设一直走到了root都没找到,那就把失败指针指向root。

构建好后,例如以下图:


针对图中红线的”h。e“这两个节点。我们想起了什么呢?对”her“中的”e“来说,e到root距离的n个字符恰好与”she“中的e向上的n个字符相等

第三步:模式匹配

匹配过程分两种情况:

(1)  当前字符匹配成功,表示从当前节点沿着树边有一条路径能够到达目标字符,此时仅仅需沿该路径走向下一个节点继续匹配就可以,目标字符串指针移向下个字符继续匹配;

(2)  当前字符不匹配,则去当前节点失败指针所指向的字符继续匹配,匹配过程随着指针指向root结束。反复这2个过程中的随意一个。直到模式串走到结尾为止。


注意:主串全部字符在匹配完后都必需要走fail节点来结束自己的旅途,相当于一个回旋,这样做的目的防止包括节点被忽略掉。

见下图,比方:我匹配到了"she",必定会匹配到该字符串的后缀”he",要想在程序中匹配到,则必须节点要走失败指针来结束自己的旅途。



三:完整代码

#include<iostream>
#include<queue>

#define MAX 26//如果仅仅出现26个小写英文字母
#define ROW 4
#define COLUMN 10

using namespace std;

char pattern[ROW][COLUMN] = { "nihao","hao","hs","hsr" };
char *s = "sdmfhsgnshejfgnihaofhsrnihao";

struct Node
{
	int index;//存储模式串的下标
	char x;
	Node *parent;
	Node *next[MAX];
	Node *fail;
	Node()
	{
		index = -1;//pattern数组下标从0開始,-1代表该节点不是单词结尾
		fail = nullptr; 
		parent = nullptr;
		for (int i = 0; i < MAX; i++)
			next[i] = nullptr;
	}
};

class ACTree
{
public:
	Node *root;
	ACTree() { root = new Node; root->fail = root; }

	void Add(const char *ch, int index);              //第一步
	void NodeToQueue(Node *node, queue<Node*> &q);    //
	void BuildFailPointer();                          //第二步
	void ACSearch(const char *s);                     //第三步
};

int main() 
{
	ACTree tree;

	for (int i = 0; i < ROW; i++)
		tree.Add(pattern[i], i);

	tree.BuildFailPointer();

	cout << "待匹配字符串为(依次5个一组的输出):\n";
	for (int i = 1; i <= strlen(s); i++)
	{
		cout << s[i];
		if (i % 5 == 0)
			cout << "  ";
	}
	cout << endl << endl;

	cout << "匹配结果例如以下:\n";
	cout << "位置\t" << "编号\t" << "模式\n";

	tree.ACSearch(s);

	return 0;
}

void ACTree::Add(const char *ch,int index)
{
	int len = strlen(ch);
	if (len == 0) return;

	Node *p = root;

	for (int i = 0; i < len; i++)
	{
		int k = ch[i] - 'a';

		if (p->next[k] == nullptr)
		{
			p->next[k] = new Node;
			p->next[k]->parent = p;
			p->next[k]->x = ch[i];
		}
		
		p = p->next[k];
	}

	p->index = index;//注意,在此保证输入的模式串不反复,否则index会被覆盖
}

void ACTree::NodeToQueue(Node *node, queue<Node*> &q)
{
	if (node != nullptr)
	{
		for (int i = 0; i < MAX; i++)
		{
			if (node->next[i])
				q.push(node->next[i]);//不知道这是干嘛的??想想BFS层次遍历的那些事
		}
	}
}

void ACTree::BuildFailPointer()
{
	queue<Node*> q;

	for (int i = 0; i < MAX; i++)
	{
		if (root->next[i])
		{
			NodeToQueue(root->next[i], q);//注意。切不可写成q.push(root->next[i]);
			root->next[i]->fail = root;
		}
	}

	Node *parent, *p;
	char ch;
	while (!q.empty())
	{
		p = q.front();
		ch = p->x;
		parent = p->parent;
		q.pop();
		NodeToQueue(p, q);

		while (1)
		{
			if (parent->fail->next[ch - 'a'] != nullptr)
			{
				p->fail = parent->fail->next[ch - 'a'];
				break;
			}
			else
			{
				if (parent->fail == root)
				{
					p->fail = root;
					break;
				}
				else
					parent = parent->fail->parent;
			}
		}
	}
}

void ACTree::ACSearch(const char *s)
{
	int len = strlen(s);
	if (len == 0) return;

	Node *p = root;

	int i = 0;
	while (i < len)
	{
		int k = s[i] - 'a';

		if (p->next[k] != nullptr)
		{
			p = p->next[k];

			if (p->index != -1)
				cout << i - strlen(pattern[p->index]) + 1 << "\t" << p->index << "\t" << pattern[p->index] << endl;

			i++;
		}
		else
		{
			if (p == root)
				i++;
			else
			{
				p = p->fail;
				if (p->index != -1)
					cout << i - strlen(pattern[p->index]) + 1 << "\t" << p->index << "\t" << pattern[p->index] << endl;
			}
		}
	}

	while (p != root)
	{
		p = p->fail;
		if(p->index!=-1)
			cout << i - strlen(pattern[p->index]) + 1 << "\t" << p->index << "\t" << pattern[p->index] << endl;
	}
}

四:数据測试







返回文件夹---->数据结构与算法文件夹









posted on 2017-07-22 20:19  mthoutai  阅读(353)  评论(0编辑  收藏  举报