ZOJ 3690
题意:
有n个人和m个数和一个k,如今每一个人能够选择一个数。假设相邻的两个人选择同样的数。那么这个数要大于k
求选择方案数。
思路:
打表推了非常久的公式都没推出来什么可行解,好不easy有了想法结果WA到天荒地老也无法AC。。
于是学习了下正规的做法,恍然大悟。
这道题应该用递推 + 矩阵高速幂。
我们设F(n) = 有n个人,第n个人选择的数大于k的方案数;
G(n) = 有n个人。第n个人选择的数小于等于k的方案数;
那么递推关系式即是:
变换矩阵例如以下:
代码君:
/*
* @author FreeWifi_novicer
* language : C++/C
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
using namespace std;
#define clr( x , y ) memset(x,y,sizeof(x))
#define cls( x ) memset(x,0,sizeof(x))
#define mp make_pair
#define pb push_back
typedef long long lint;
typedef long long ll;
typedef long long LL;
const lint mod = 1e9 + 7;
const int maxn = 4;
lint n,m,k;
struct Matrix{
int n , m ;
lint a[maxn][maxn];
Matrix( int n , int m ){
this->n = n ;
this->m = m ;
cls(a);
}
Matrix operator * ( const Matrix &tmp ){
Matrix res( n , tmp.m );
for( int i = 0 ; i < n ; i++ )
for( int j = 0 ; j < tmp.m ; j++ )
for( int k = 0 ; k < m ; k++ )
res.a[i][j] = ( res.a[i][j] + ( a[i][k] * tmp.a[k][j] ) % mod ) % mod;
return res;
}
};
void Matrix_print( Matrix x ){
for( int i = 0 ; i < x.n ; i++ ){
for( int j = 0 ; j < x.m ; j++){
cout << x.a[i][j] << ' ';
}
cout << endl;
}
cout << endl;
}
Matrix fast_pow( Matrix x , lint n ){
Matrix res( x.n , x.m );
for( int i = 0 ; i < x.n ; i++ ) res.a[i][i] = 1;
while( n ){
if( n & 1 )
res = res * x;
x = x * x;
n >>= 1;
}
return res;
}
void solve(){
Matrix base( 2 , 1 );
Matrix fun( 2 , 2 );
fun.a[0][0] = m - k ;
fun.a[0][1] = m - k ;
fun.a[1][0] = k ;
fun.a[1][1] = k - 1 ;
base.a[0][0] = m - k ;
base.a[1][0] = k ;
fun = fast_pow( fun , n - 1);
base = fun * base ;
cout << (base.a[1][0] + base.a[0][0]) % mod << endl;
}
int main(){
// freopen("input.txt","r",stdin);
while(cin >> n >> m >> k){
solve();
}
return 0;
}
HDU 3658
题意:
在52个英文字母里面选择m个字母组成一个字符串。
满足下面两个条件:
一、相邻的两个字符的ASCLL码的绝对值小于等于32(比方说X与x的码值差为32)。
二、至少要有一对的字符的绝对值为32。
思路:
分两步:先求出满足条件一的方案数。再减去相邻的两个字符的ASCLL码的绝对值**小于**32的方案数即可。
第一步:
我们设
那么
…
…
然后建立矩阵变换高速幂搞下即可。
。这个矩阵太庞大我就不画了。。
第二步:
我们设
那么
…
…
建立变换矩阵,而后高速幂。
代码君:
/*
* @author FreeWifi_novicer
* language : C++/C
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
using namespace std;
#define clr( x , y ) memset(x,y,sizeof(x))
#define cls( x ) memset(x,0,sizeof(x))
#define mp make_pair
#define pb push_back
typedef long long lint;
typedef long long ll;
typedef long long LL;
const int maxn = 54 ;
const lint mod = 1e9 + 7;
lint n ;
struct Matrix{
int n , m ;
lint a[maxn][maxn];
Matrix( int n , int m ){
this->n = n ;
this->m = m ;
cls(a);
}
Matrix operator * ( const Matrix &tmp ){
Matrix res( n , tmp.m );
for( int i = 0 ; i < n ; i++ )
for( int j = 0 ; j < tmp.m ; j++ )
for( int k = 0 ; k < m ; k++ )
res.a[i][j] = ( res.a[i][j] + ( a[i][k] * tmp.a[k][j] ) % mod ) % mod;
return res;
}
};
Matrix fast_pow( Matrix x , lint n ){
Matrix res( x.n , x.m );
for( int i = 0 ; i < x.m ; i++ ) res.a[i][i] = 1 ;
while( n ){
if( n & 1 )
res = res * x;
x = x * x ;
n >>= 1;
}
return res;
}
void solve(){
if( n == 2 ){
cout << 52 << endl;
return;
}
Matrix base( 52 , 1 );
Matrix base1( 52 , 1 );
Matrix base2( 52 , 1 );
Matrix fun( 52 , 52 );
for( int i = 0 ; i < 52 ; i++ ) base.a[i][0] = 1;
for( int i = 0 ; i < 26 ; i++ ){
for( int j = 0 ; j < 27 + i ; j++ )
fun.a[i][j] = 1;
}
for( int i = 26 ; i < 52 ; i++ ){
for( int j = 51 ; j >= i - 26 ; j-- )
fun.a[i][j] = 1;
}
fun = fast_pow( fun , n - 1 );
base1 = fun * base ;
lint sum1 = 0;
cls(fun.a);
for( int i = 0 ; i < 52 ; i++ ) sum1 = ( sum1 + base1.a[i][0] ) % mod;
for( int i = 0 ; i < 26 ; i++ ){
for( int j = 0 ; j < 26 + i; j++ )
fun.a[i][j] = 1;
}
for( int i = 26 ; i < 52 ; i++ ){
for( int j = 51 ; j >= i - 25 ; j-- )
fun.a[i][j] = 1;
}
fun = fast_pow( fun , n - 1 );
base2 = fun * base ;
lint sum2 = 0;
for( int i = 0 ; i < 52 ; i++ ) sum2 = ( sum2 + base2.a[i][0] ) % mod;
lint ans = ( sum1 - sum2 + mod ) % mod ;
cout << ans << endl;
}
int main(){
//freopen("output.txt","w+",stdout);
int t ; cin >> t;
while( t-- ){
cin >> n ;
solve();
}
return 0;
}