• workflow & pipeline 的设计;

0. 数据预处理

  • 降维:
    • PCA;
  • 图像预处理
    • 去均值,归一化(缩放在 (0, 1) 之间),imresize;

1. 机器学习方法

  • 尤其是图像问题,对特征提取方法提取特征的质量依赖较高;
    • 也即特征工程,这里给出一些先验的特征提取方法:
      • scene classification:bag of visual words,比如 restaurant 对应的 words:椅子,吧台,桌子等这些即为 visual words;
  • 参数优化:

2. 深度学习方法

  • 考虑到最终实现的效率问题:
    • 使用 transfer learning,使用在 ImageNet 等大型数据集上已训练好的大型深度神经网络模型;也即 fine-tune a pre-trained model(transfer learning),使用转移学习对已训练好的模型进行 fine-tune 尤其适用于仅有中等规模的数据集(medium amounts of data),此外还有训练时间的考虑。自然,如果数据集规模很大,时间较为充沛,可考虑自己设计深度神经网络模型以及对本地数据进行训练;
    • 且从头到尾训练一个深度神经网络,对于小规模的数据集还容易造成,过拟合问题;
    • 模型所在的位置:Index of /matconvnet/models

3. 模型调优

  • 不断地改变参数,有时为了最终的比赛结果宁可牺牲效率;
posted on 2017-05-09 18:15  未雨愁眸  阅读(112)  评论(0编辑  收藏  举报