1. Γ(a+b)Γ(a)Γ(b):归一化系数
Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1
面对这样一个复杂的概率密度函数,我们不禁要问,Γ(a+b)Γ(a)Γ(b) 是怎么来的,还有既然是一种分布,是否符合归一化的要求,即:
∫10Beta(μ|a,b)dμ=1
通过后续的求解我们将发现,这两者其实是同一个问题,即正是为了使得 Beta 分布符合归一化的要求,才在前面加了 Γ(a+b)Γ(a)Γ(b),这样复杂的归一化系数。
为了证明:
∫10Beta(μ|a,b)=1⇒∫10Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1dμ⇓∫10μa−1(1−μ)b−1dμ=Γ(a)Γ(b)Γ(a+b)
进一步,根据 Γ(x)=∫∞0e−ttx−1dt 的定义,我们首先来计算(令 t=x+y):
Γ(a)Γ(b)======∫∞0e−xxa−1dx∫∞0e−yyb−1dy∫∞0xa−1{∫∞xe−t(t−x)b−1dt}dx(交换t与x的积分顺序,注意画图)∫∞0e−t{∫t0xa−1(t−x)b−1dx}dt(变换替换x=tμ)∫∞0e−t{∫10(tμ)a−1(t−tμ)b−1tdμ}dt∫∞0e−tta+b−1dt∫10μa−1(1−μ)b−1dμΓ(a+b)∫10μa−1(1−μ)b−1dμ
因此:
∫10μa−1(1−μ)b−1dμ=Γ(a)Γ(b)Γ(a+b)
2. 期望与方差的计算
首先来看期望:
E(μ)====∫10μΓ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1dμΓ(a+b)Γ(a)Γ(b)∫10μa+1−1(1−μ)b−1dμΓ(a+b)Γ(a)Γ(b)Γ(a+1)Γ(b)Γ(a+1+b)aa+b
计算方差之前,首先计算二阶矩:
E(μ2)=Γ(a+b)Γ(a)Γ(b)Γ(a+2)Γ(b)Γ(a+2+b)=a(a+1)(a+b)(a+b+1)
因此方差:
var[μ]=E(μ2)−E2(μ)=ab(a+b)2(a+b+1)