scikit-learn 是 Python 非常强大的一个做机器学习的包,今天介绍scikit-learn 里几个常用的分类器
SVM, KNN 和 logistic regression,用来做笑脸识别。
这里用到的是GENKI4K 这个数据库,每张图像先做一个人脸检测与剪切,然后提取HOG特征。这个数据库有 4000 张图,分成4组,做一个 cross validation,取平均值作为最终的识别率:
import string, os, sys
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import random
from sklearn import neighbors, linear_model, svm
dir = '/GENKI4K/Feature_Data'
print '----------- no sub dir'
# prepare the data
files = os.listdir(dir)
for f in files:
print dir + os.sep + f
file_path=dir+os.sep+files[14]
#print file_path
dic_mat = scipy.io.loadmat(file_path)
data_mat=dic_mat['Hog_Feat']
print 'feature: ', data_mat.shape
#print data_mat.dtype
file_path2=dir+os.sep+files[15]
#print file_path2
dic_label=scipy.io.loadmat(file_path2)
label_mat=dic_label['Label']
file_path3=dir+os.sep+files[16]
print 'fiel 3 path: ', file_path3
dic_T=scipy.io.loadmat(file_path3)
T=dic_T['T']
T=T-1
print T.shape
label=label_mat.ravel()
# Acc=np.zeros((1,4))
Acc=[0,0,0,0]
for i in range (0, 4):
print "the fold %d" % (i+1)
train_ind=[]
for j in range (0, 4):
if j==i:
test_ind=T[j]
else:
train_ind.extend(T[j])
# print len(test_ind), len(train_ind)
# print max(test_ind), max(train_ind)
train_x=data_mat[train_ind, :]
test_x=data_mat[test_ind, :]
train_y=label[train_ind]
test_y=label[test_ind]
# SVM
clf=svm.LinearSVC()
# KNN
# clf = neighbors.KNeighborsClassifier(n_neighbors=15)
# Logistic regression
# clf = linear_model.LogisticRegression()
clf.fit(train_x, train_y)
predict_y=clf.predict(test_x)
Acc[i]=np.mean(predict_y == test_y)
print "Accuracy: %.2f" % (Acc[i])
print "The mean average classification accuracy: %.2f" % (np.mean(Acc))
# SVM 的实验结果
(4, 1000)
the fold 1
Accuracy: 0.89
the fold 2
Accuracy: 0.88
the fold 3
Accuracy: 0.89
the fold 4
Accuracy: 0.90
The mean average classification accuracy: 0.89
# KNN 的实验结果
(4, 1000)
the fold 1
Accuracy: 0.83
the fold 2
Accuracy: 0.84
the fold 3
Accuracy: 0.84
the fold 4
Accuracy: 0.85
The mean average classification accuracy: 0.84
# logistic regression 的实验结果
(4, 1000)
the fold 1
Accuracy: 0.91
the fold 2
Accuracy: 0.91
the fold 3
Accuracy: 0.90
the fold 4
Accuracy: 0.92
The mean average classification accuracy: 0.91
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步