今天,我们介绍机器学习里比较常用的一种分类算法,决策树。决策树是对人类认知识别的一种模拟,给你一堆看似杂乱无章的数据,如何用尽可能少的特征,对这些数据进行有效的分类。

决策树借助了一种层级分类的概念,每一次都选择一个区分性最好的特征进行分类,对于可以直接给出标签 label 的数据,可能最初选择的几个特征就能很好地进行区分,有些数据可能需要更多的特征,所以决策树的深度也就表示了你需要选择的几种特征。

在进行特征选择的时候,常常需要借助信息论的概念,利用最大熵原则。
决策树一般是用来对离散数据进行分类的,对于连续数据,可以事先对其离散化。

在介绍决策树之前,我们先简单的介绍一下信息熵,我们知道,熵的定义为:

En(xi)=log2p(xi)

p(xi) 表示 x 属于第 i 类的概率,我们把所有类的期望定义为熵:

H=i=1np(xi)log2p(xi)

这里 n 表示类别的个数。

我们先构造一些简单的数据:

from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
import math
import operator

def Create_data():
    dataset = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no'],
               [3, 0, 'maybe']]
    feat_name = ['no surfacing', 'flippers']
    return dataset, feat_name

然后定义一个计算熵的函数:

def Cal_entrpy(dataset):
    n_sample = len(dataset)
    n_label = {}
    for featvec in dataset:
        current_label = featvec[-1]
        if current_label not in n_label.keys():
            n_label[current_label] = 0
        n_label[current_label] += 1
    shannonEnt = 0.0
    for key in n_label:
        prob = float(n_label[key]) / n_sample
        shannonEnt -= prob * math.log(prob, 2)

    return shannonEnt

要注意的是,熵越大,说明数据的类别越分散,越呈现某种无序的状态。

下面再定义一个拆分数据集的函数:

def Split_dataset(dataset, axis, value):
    retDataSet = []
    for featVec in dataset:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1 :])
            retDataSet.append(reducedFeatVec)

    return retDataSet

结合前面的几个函数,我们可以构造一个特征选择的函数:

def Choose_feature(dataset):
    num_sample = len(dataset)
    num_feature = len(dataset[0]) - 1
    baseEntrpy = Cal_entrpy(dataset)
    best_Infogain = 0.0
    bestFeat = -1
    for i in range (num_feature):
        featlist = [example[i] for example in dataset]
        uniquValus = set(featlist)
        newEntrpy = 0.0
        for value in uniquValus:
            subData = Split_dataset(dataset, i, value)
            prob = len(subData) / float(num_sample)
            newEntrpy += prob * Cal_entrpy(subData)
        info_gain = baseEntrpy - newEntrpy
        if (info_gain > best_Infogain):
            best_Infogain = info_gain
            bestFeat = i

    return bestFeat

然后再构造一个投票及计票的函数

def Major_cnt(classlist):
    class_num = {}
    for vote in classlist:
        if vote not in class_num.keys():
            class_num[vote] = 0
        class_num[vote] += 1

    Sort_K = sorted(class_num.iteritems(), 
       key = operator.itemgetter(1), reverse=True)    
    return Sort_K[0][0]

有了这些,就可以构造我们需要的决策树了:

def Create_tree(dataset, featName):
    classlist = [example[-1] for example in dataset]
    if classlist.count(classlist[0]) == len(classlist):
        return classlist[0]

    if len(dataset[0]) == 1:
        return Major_cnt(classlist)

    bestFeat = Choose_feature(dataset)
    bestFeatName = featName[bestFeat]
    myTree = {bestFeatName: {}}
    del(featName[bestFeat])

    featValues = [example[bestFeat] for example in dataset]
    uniqueVals = set(featValues)

    for value in uniqueVals:
        subLabels = featName[:]
        myTree[bestFeatName][value] = Create_tree(Split_dataset\
              (dataset, bestFeat, value), subLabels)
    return myTree
def Get_numleafs(myTree):
    numLeafs = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict' :
            numLeafs += Get_numleafs(secondDict[key])
        else: 
            numLeafs += 1
    return numLeafs
def Get_treedepth(myTree):
    max_depth = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict' :
            this_depth = 1 + Get_treedepth(secondDict[key])
        else: 
            this_depth = 1
        if this_depth > max_depth:
            max_depth = this_depth
    return max_depth

我们也可以把决策树绘制出来:

def Plot_node(nodeTxt, centerPt, parentPt, nodeType):
    Create_plot.ax1.annotate(nodeTxt, xy=parentPt,
                            xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def Plot_tree(myTree, parentPt, nodeTxt):
    numLeafs = Get_numleafs(myTree)
    Get_treedepth(myTree)
    firstStr = myTree.keys()[0]
    cntrPt = (Plot_tree.xOff + (1.0 + float(numLeafs))/2.0/Plot_tree.totalW,\
              Plot_tree.yOff)
    Plot_midtext(cntrPt, parentPt, nodeTxt)
    Plot_node(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    Plot_tree.yOff = Plot_tree.yOff - 1.0/Plot_tree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            Plot_tree(secondDict[key],cntrPt,str(key))
        else:
            Plot_tree.xOff = Plot_tree.xOff + 1.0/Plot_tree.totalW
            Plot_node(secondDict[key], (Plot_tree.xOff, Plot_tree.yOff),
                     cntrPt, leafNode)
            Plot_midtext((Plot_tree.xOff, Plot_tree.yOff), cntrPt, str(key))
    Plot_tree.yOff = Plot_tree.yOff + 1.0/Plot_tree.totalD

def Create_plot (myTree):
    fig = plt.figure(1, facecolor = 'white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    Create_plot.ax1 = plt.subplot(111, frameon=False, **axprops)
    Plot_tree.totalW = float(Get_numleafs(myTree))
    Plot_tree.totalD = float(Get_treedepth(myTree))
    Plot_tree.xOff = -0.5/Plot_tree.totalW; Plot_tree.yOff = 1.0;
    Plot_tree(myTree, (0.5,1.0), '')
    plt.show()

def Plot_midtext(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    Create_plot.ax1.text(xMid, yMid, txtString)
def Classify(myTree, featLabels, testVec):

    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict' :
                classLabel = Classify(secondDict[key],featLabels,testVec)
            else:
                classLabel = secondDict[key]
    return classLabel

最后,可以测试我们的构造的决策树分类器:

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

myData, featName = Create_data()

S_entrpy = Cal_entrpy(myData)

new_data = Split_dataset(myData, 0, 1)

best_feat = Choose_feature(myData)

myTree = Create_tree(myData, featName[:])

num_leafs = Get_numleafs(myTree)

depth = Get_treedepth(myTree)

Create_plot(myTree)

predict_label = Classify(myTree, featName, [1, 0])

print("the predict label is: ", predict_label)
print("the decision tree is: ", myTree)
print("the best feature index is: ", best_feat)
print("the new dataset: ", new_data)
print("the original dataset: ", myData)
print("the feature names are: ",  featName)
print("the entrpy is:", S_entrpy)
print("the number of leafs is: ", num_leafs)
print("the dpeth is: ", depth)
print("All is well.")

构造的决策树最后如下所示:

这里写图片描述

posted on 2017-11-13 21:53  未雨愁眸  阅读(245)  评论(0编辑  收藏  举报