1 定义

1.1 生成式模型    

        生成式模型(Generative Model)会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得 p(yi|x),然后选取使得p(yi|x) 最大的 yi,即:


        简单说生成式模型就是生成数据分布的模型。将求联合分布的问题转为了求类别先验概率和类别条件概率的问题。

1.2 判别式模型

        对条件概率 p(y|x;\theta) 直接建模。

        简单说就是判别数据输出量的模型,解决问题的思路为:

        条件分布>模型参数后延概率最大>似然函数*参数先验最大>最大似然


生成式模型可以转为判别式模型,反之不行。

AndrewNg在NIPS2001年有一篇专门比较判别模型和产生式模型的文章:

On Discrimitive vs. Generative classifiers: A comparision of logistic regression and naive Bayes


2 模型优劣比较

2.1 生成式模型

        常见的生成式模型有:

  • 线性判别式分析 (Linear Discriminant Analysis)
  • 朴素贝叶斯 (Native Bayesian)
  • K近邻 (KNN)
  • 混合高斯模型 (GaussianMixture Model)
  • 隐马尔科夫模型 (HiddenMarkov Model)
  • 贝叶斯网络 (Bayesian Networks)
  • 马尔科夫随机场 (Markov Random Fields)
  • 深度信念网络 (Deep Belief Networks)

        其特点在于(相比于判别式模型):

  • 通常收敛速度较快,少量样本就可以收敛
  • 能应付隐变量
  • 需要对数据分布做出假设(比方朴素贝叶斯假设特征分布符合条件独立的假设)
  • 计算量大
  • 实践效果(比如分类)稍差
  • 容易过拟合
  • 更好利用无标签数据(DBN)
  • 添加新的类别时,计算新的联合分布即可,不需要全部数据重新训练
  • 能检测异常值

2.2 判别式模型

        常见的判别式模型有:

  • 线性回归 (LinearRegression)
  • 逻辑斯蒂回归 (LogisticRegression)
  • 神经网络 (NN)
  • 支持向量机 (SVM)
  • 高斯过程 (GaussianProcess)
  • 条件随机场 (CRF)
  • CART(Classificationand Regression Tree)

        其特点在于(相比于生成式模型):

  • 节省计算资源
  • 节省样本
  • 效果好一些
  • 输入数据可以预处理(降维、构造等),简化学习的问题
  • 解决凸优化问题
  • 添加新的数据时,所有数据要重新训练
  • 不能检测异常值






参考:

知乎:机器学习“判定模型”和“生成模型”有什么区别?

https://www.cnblogs.com/kemaswill/p/3427422.html

《统计学习方法》



posted on 2018-07-05 17:38  未雨愁眸  阅读(480)  评论(0编辑  收藏  举报