基于Word2Vec的诗词生成器

基于Word2Vec制作的诗词生成器

 

1、什么是Word2Vec?

  Word2vec 是 Word Embedding 方式之一,属于 NLP 领域。它是从大量文本预料中以无监督方式学习语义知识的模型,被广泛地应用于自然语言处理中。

  Word2Vec是将词转化为“可计算”“结构化”的向量的过程,是用来生成词向量的工具,而词向量与语言模型有着密切的关系。

 

2、基于Word2Vec的诗词生成器的结构

  |——GUI诗词生成器.py   

  |——w_poem.py

  |——mo.txt

  |——诗词库.txt

GUI诗词生成器.py  :GUI界面,用来获取用户输入关键字和作者名,和获取w_poem.py生成的诗词并转换成标签显示在GUI界面

w_poem.py :两个函数,save_model函数用来保存训练数据,write_poem函数调用Word2Vec生成的训练数据,查找与用户输入的关键字相似度最高的词语,根据要求组装成诗词。

mo.txt :保存训练数据

诗词库.txt :原始数据

 

3、成品

还没有加别的规则和算法,所以得到的诗词并不优美。

 

4、代码

GUI诗词生成器.py   

from tkinter import *
import w_poem


# 创建窗口:实例化一个窗口对象。
class TKK:
    def __init__(self):
        self.root = Tk()
        # 窗口大小
        self.root.geometry("350x400+374+182")
        #  窗口标题
        self.root.title("馒头的诗词生成器")
        # 添加关键字标签控件
        label = Label(self.root, text="  关键字  ", font=("宋体", 20))
        label.place(x=20,y=0)
        # 关键字输入框
        self.entry1 = Entry(self.root, font=("宋体", 20), width=10 )
        self.entry1.place(x=170,y=0)
        #添加作者标签
        label = Label(self.root, text="  作者  ", font=("宋体", 20))
        label.place(x=20,y=50)
        # 作者输入框
        self.entry2 = Entry(self.root, font=("宋体", 20), width=10)
        self.entry2.place(x=170,y=50)
        # 添加点击按钮
        button = Button(self.root, text="诗词生成", width=32,font=("宋体", 16), command=self.getpoem)  # command=textt
        button.place(x=0,y=90)
        # 单选按钮
        self.radio = IntVar()
        r1 = Radiobutton(self.root, text="五言诗", font=("宋体", 12), fg="orange", variable=self.radio, value=0)
        r1.place(x=20,y=130)
        r2 = Radiobutton(self.root, text="七言诗", font=("宋体", 12), fg="orange", variable=self.radio, value=1)
        r2.place(x=100,y=130)
        r3 = Radiobutton(self.root, text="对联", font=("宋体", 12), fg="orange", variable=self.radio, value=2)
        r3.place(x=180,y=130)
        r5 = Radiobutton(self.root, text="九九归一", font=("宋体", 12), fg="orange", variable=self.radio, value=3)
        r5.place(x=250,y=130)

        # 显示窗口
        self.root.mainloop()

    def getpoem(self):
        list_radio = ["五言诗", "七言诗", "对联", "九九归一"]
        types = (list_radio[self.radio.get()])
        kw = self.entry1.get()
        xx = [20 if types=="对联" else 80]
        poem_name = self.entry2.get()
        te = w_poem.witer_poem(kw ,types,poem_name)
        text = Label(text=te,font=("宋体", 12),fg="blue")
        text.place(x=xx, y=150)



if __name__ == '__main__':
    tkk = TKK
    tkk() 

w_poem.py

from random import choice
from gensim.models import Word2Vec


def save_model():
    # 保存训练数据
    with open("诗词库.txt", 'r', encoding='utf-8') as f:
        words = [list(line.strip()) for line in f]
        ##window=16滑窗大小, min_count = 60过滤低频字
        model = Word2Vec(sentences=words, min_count=60, vector_size=200, window=16,)
        model.save("mo.txt")


def witer_poem(kw, types, poem_name):
    typp = {"五言诗": (4, 5), "七言诗": (4, 7), "九九归一": (9, 9), "对联": (2, 9)}
    types = typp[types]
    shici = list(kw)
    # 调用训练数据
    model = Word2Vec.load("mo.txt")
    for row in range(types[0]):
        for col in range(types[1]):
            # 查找相似度最高的100个字-topn
            pred = model.predict_output_word(context_words_list=shici, topn=100)
            # 去除特殊符号
            fu = [",", ".","?","‘","“","-","+","=","。","/",";",";",":","[","]",
                  "{","}","!","@","#","$","%","^","&","*","(",")","、","《","》"]
            number = ["1","2","3","4","5","6","7","8","9","0"," ","!"]
            rs = [w[0] for w in pred if w[0] not in shici + fu + number]
            char = choice([c for c in rs if c not in kw])
            shici.append(char)
        # 添加标点符号
        shici.append("," if row % 2 == 0 and types[0] % 2 == 0 else "。\n")
    # 分段显示
    sclen = types[0] * (types[1] + 1)  # 计算诗词的长度,然后使用-sclen,来找到诗词标题的位置
    # 如果是偶数句,则两句一行,否则一行一句
    if types[0] % 2 == 0:
        # 排版----->第一行题目  第二行作者   剩下的为诗词
        last = "%s" % "".join(shici[:-sclen]) + "\n" + \
               "作者:" + poem_name + "\n" + \
               "".join(shici[-sclen:])
    else:
        last = "%s" % "".join(shici[:-sclen]) + "\n" + \
               "作者:" + poem_name + "\n" + \
               "".join(shici[-sclen:])
    return last

 

 

 

 

posted @ 2022-05-21 17:41  mt0u  阅读(455)  评论(0编辑  收藏  举报