Kruskal算法

一、 最小生成树

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。 

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

 

 

二、克鲁斯卡尔算法介绍

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。 

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。 
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

 

 

三、克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

第1步:将边<E,F>加入R中。 
    边<E,F>的权值最小,因此将它加入到最小生成树结果R中。 
第2步:将边<C,D>加入R中。 
    上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。 
第3步:将边<D,E>加入R中。 
    上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。 
第4步:将边<B,F>加入R中。 
    上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。 
第5步:将边<E,G>加入R中。 
    上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。 
第6步:将边<A,B>加入R中。 
    上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。 

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

 

 

四、克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题: 
问题一 对图的所有边按照权值大小进行排序。 
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。 

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点: 

(01) C的终点是F。 
(02) D的终点是F。 
(03) E的终点是F。 
(04) F的终点是F。 

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

 

 

五、克鲁斯卡尔算法代码说明

有了前面的算法分析之后,下面我们来查看具体代码。这里选取"邻接矩阵"进行说明,对于"邻接表"实现的图在后面的源码中会给出相应的源码。

1. 基本定义

// 边的结构体
class EData
{
    public:
        char start; // 边的起点
        char end;   // 边的终点
        int weight; // 边的权重

    public:
        EData(){}
        EData(char s, char e, int w):start(s),end(e),weight(w){}
};

EData是邻接矩阵边对应的结构体。

class MatrixUDG {
    #define MAX    100
    #define INF    (~(0x1<<31))        // 无穷大(即0X7FFFFFFF)
    private:
        char mVexs[MAX];    // 顶点集合
        int mVexNum;             // 顶点数
        int mEdgNum;             // 边数
        int mMatrix[MAX][MAX];   // 邻接矩阵

    public:
        // 创建图(自己输入数据)
        MatrixUDG();
        // 创建图(用已提供的矩阵)
        //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
        MatrixUDG(char vexs[], int vlen, int matrix[][9]);
        ~MatrixUDG();

        // 深度优先搜索遍历图
        void DFS();
        // 广度优先搜索(类似于树的层次遍历)
        void BFS();
        // prim最小生成树(从start开始生成最小生成树)
        void prim(int start);
        // 克鲁斯卡尔(Kruskal)最小生成树
        void kruskal();
        // 打印矩阵队列图
        void print();

    private:
        // 读取一个输入字符
        char readChar();
        // 返回ch在mMatrix矩阵中的位置
        int getPosition(char ch);
        // 返回顶点v的第一个邻接顶点的索引,失败则返回-1
        int firstVertex(int v);
        // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
        int nextVertex(int v, int w);
        // 深度优先搜索遍历图的递归实现
        void DFS(int i, int *visited);
        // 获取图中的边
        EData* getEdges();
        // 对边按照权值大小进行排序(由小到大)
        void sortEdges(EData* edges, int elen);
        // 获取i的终点
        int getEnd(int vends[], int i);
};

MatrixUDG是邻接矩阵对应的结构体。 
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

 

2. 克鲁斯卡尔算法

/*
 * 克鲁斯卡尔(Kruskal)最小生成树
 */
void MatrixUDG::kruskal()
{
    int i,m,n,p1,p2;
    int length;
    int index = 0;          // rets数组的索引
    int vends[MAX]={0};     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
    EData rets[MAX];        // 结果数组,保存kruskal最小生成树的边
    EData *edges;           // 图对应的所有边

    // 获取"图中所有的边"
    edges = getEdges();
    // 将边按照"权"的大小进行排序(从小到大)
    sortEdges(edges, mEdgNum);

    for (i=0; i<mEdgNum; i++)
    {
        p1 = getPosition(edges[i].start);      // 获取第i条边的"起点"的序号
        p2 = getPosition(edges[i].end);        // 获取第i条边的"终点"的序号

        m = getEnd(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
        n = getEnd(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
        // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
        if (m != n)
        {
            vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
            rets[index++] = edges[i];           // 保存结果
        }
    }
    delete[] edges;

    // 统计并打印"kruskal最小生成树"的信息
    length = 0;
    for (i = 0; i < index; i++)
        length += rets[i].weight;
    cout << "Kruskal=" << length << ": ";
    for (i = 0; i < index; i++)
        cout << "(" << rets[i].start << "," << rets[i].end << ") ";
    cout << endl;
}

 

 

完整代码:(邻接矩阵)

/**
 * C++: Kruskal算法生成最小生成树(邻接矩阵)
 *
 * @author skywang
 * @date 2014/04/24
 */

#include <iomanip>
#include <iostream>
#include <vector>
using namespace std;

// 边的结构体
class EData
{
    public:
        char start; // 边的起点
        char end;   // 边的终点
        int weight; // 边的权重

    public:
        EData(){}
        EData(char s, char e, int w):start(s),end(e),weight(w){}
};

class MatrixUDG {
    #define MAX    100
    #define INF    (~(0x1<<31))        // 无穷大(即0X7FFFFFFF)
    private:
        char mVexs[MAX];    // 顶点集合
        int mVexNum;             // 顶点数
        int mEdgNum;             // 边数
        int mMatrix[MAX][MAX];   // 邻接矩阵

    public:
        // 创建图(自己输入数据)
        MatrixUDG();
        // 创建图(用已提供的矩阵)
        //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
        MatrixUDG(char vexs[], int vlen, int matrix[][9]);
        ~MatrixUDG();

        // 深度优先搜索遍历图
        void DFS();
        // 广度优先搜索(类似于树的层次遍历)
        void BFS();
        // prim最小生成树(从start开始生成最小生成树)
        void prim(int start);
        // 克鲁斯卡尔(Kruskal)最小生成树
        void kruskal();
        // 打印矩阵队列图
        void print();

    private:
        // 读取一个输入字符
        char readChar();
        // 返回ch在mMatrix矩阵中的位置
        int getPosition(char ch);
        // 返回顶点v的第一个邻接顶点的索引,失败则返回-1
        int firstVertex(int v);
        // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
        int nextVertex(int v, int w);
        // 深度优先搜索遍历图的递归实现
        void DFS(int i, int *visited);
        // 获取图中的边
        EData* getEdges();
        // 对边按照权值大小进行排序(由小到大)
        void sortEdges(EData* edges, int elen);
        // 获取i的终点
        int getEnd(int vends[], int i);
};

/* 
 * 创建图(自己输入数据)
 */
MatrixUDG::MatrixUDG()
{
    char c1, c2;
    int i, j, weight, p1, p2;
    
    // 输入"顶点数"和"边数"
    cout << "input vertex number: ";
    cin >> mVexNum;
    cout << "input edge number: ";
    cin >> mEdgNum;
    if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
    {
        cout << "input error: invalid parameters!" << endl;
        return ;
    }
    
    // 初始化"顶点"
    for (i = 0; i < mVexNum; i++)
    {
        cout << "vertex(" << i << "): ";
        mVexs[i] = readChar();
    }

    // 1. 初始化"边"的权值
    for (i = 0; i < mVexNum; i++)
    {
        for (j = 0; j < mVexNum; j++)
        {
            if (i==j)
                mMatrix[i][j] = 0;
            else
                mMatrix[i][j] = INF;
        }
    }
    // 2. 初始化"边"的权值: 根据用户的输入进行初始化
    for (i = 0; i < mEdgNum; i++)
    {
        // 读取边的起始顶点,结束顶点,权值
        cout << "edge(" << i << "): ";
        c1 = readChar();
        c2 = readChar();
        cin >> weight;

        p1 = getPosition(c1);
        p2 = getPosition(c2);
        if (p1==-1 || p2==-1)
        {
            cout << "input error: invalid edge!" << endl;
            return ;
        }

        mMatrix[p1][p2] = weight;
        mMatrix[p2][p1] = weight;
    }
}

/*
 * 创建图(用已提供的矩阵)
 *
 * 参数说明:
 *     vexs  -- 顶点数组
 *     vlen  -- 顶点数组的长度
 *     matrix-- 矩阵(数据)
 */
MatrixUDG::MatrixUDG(char vexs[], int vlen, int matrix[][9])
{
    int i, j;
    
    // 初始化"顶点数"和"边数"
    mVexNum = vlen;
    // 初始化"顶点"
    for (i = 0; i < mVexNum; i++)
        mVexs[i] = vexs[i];

    // 初始化"边"
    for (i = 0; i < mVexNum; i++)
        for (j = 0; j < mVexNum; j++)
            mMatrix[i][j] = matrix[i][j];

    // 统计边的数目
    for (i = 0; i < mVexNum; i++)
        for (j = 0; j < mVexNum; j++)
            if (i!=j && mMatrix[i][j]!=INF)
                mEdgNum++;
    mEdgNum /= 2;
}

/* 
 * 析构函数
 */
MatrixUDG::~MatrixUDG() 
{
}

/*
 * 返回ch在mMatrix矩阵中的位置
 */
int MatrixUDG::getPosition(char ch)
{
    int i;
    for(i=0; i<mVexNum; i++)
        if(mVexs[i]==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
char MatrixUDG::readChar()
{
    char ch;

    do {
        cin >> ch;
    } while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));

    return ch;
}


/*
 * 返回顶点v的第一个邻接顶点的索引,失败则返回-1
 */
int MatrixUDG::firstVertex(int v)
{
    int i;

    if (v<0 || v>(mVexNum-1))
        return -1;

    for (i = 0; i < mVexNum; i++)
        if (mMatrix[v][i]!=0 && mMatrix[v][i]!=INF)
            return i;

    return -1;
}

/*
 * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
 */
int MatrixUDG::nextVertex(int v, int w)
{
    int i;

    if (v<0 || v>(mVexNum-1) || w<0 || w>(mVexNum-1))
        return -1;

    for (i = w + 1; i < mVexNum; i++)
        if (mMatrix[v][i]!=0 && mMatrix[v][i]!=INF)
            return i;

    return -1;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
void MatrixUDG::DFS(int i, int *visited)
{
    int w;

    visited[i] = 1;
    cout << mVexs[i] << " ";
    // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
    for (w = firstVertex(i); w >= 0; w = nextVertex(i, w))
    {
        if (!visited[w])
            DFS(w, visited);
    }
       
}

/*
 * 深度优先搜索遍历图
 */
void MatrixUDG::DFS()
{
    int i;
    int visited[MAX];       // 顶点访问标记

    // 初始化所有顶点都没有被访问
    for (i = 0; i < mVexNum; i++)
        visited[i] = 0;

    cout << "DFS: ";
    for (i = 0; i < mVexNum; i++)
    {
        //printf("\n== LOOP(%d)\n", i);
        if (!visited[i])
            DFS(i, visited);
    }
    cout << endl;
}

/*
 * 广度优先搜索(类似于树的层次遍历)
 */
void MatrixUDG::BFS()
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点访问标记
    int i, j, k;

    for (i = 0; i < mVexNum; i++)
        visited[i] = 0;

    cout << "BFS: ";
    for (i = 0; i < mVexNum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            cout << mVexs[i] << " ";
            queue[rear++] = i;  // 入队列
        }
        while (head != rear) 
        {
            j = queue[head++];  // 出队列
            for (k = firstVertex(j); k >= 0; k = nextVertex(j, k)) //k是为访问的邻接顶点
            {
                if (!visited[k])
                {
                    visited[k] = 1;
                    cout << mVexs[k] << " ";
                    queue[rear++] = k;
                }
            }
        }
    }
    cout << endl;
}

/*
 * 打印矩阵队列图
 */
void MatrixUDG::print()
{
    int i,j;

    cout << "Martix Graph:" << endl;
    for (i = 0; i < mVexNum; i++)
    {
        for (j = 0; j < mVexNum; j++)
            cout << setw(10) << mMatrix[i][j] << " ";
        cout << endl;
    }
}

/*
 * prim最小生成树
 *
 * 参数说明:
 *   start -- 从图中的第start个元素开始,生成最小树
 */
void MatrixUDG::prim(int start)
{
    int min,i,j,k,m,n,sum;
    int index=0;         // prim最小树的索引,即prims数组的索引
    char prims[MAX];     // prim最小树的结果数组
    int weights[MAX];    // 顶点间边的权值

    // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
    prims[index++] = mVexs[start];

    // 初始化"顶点的权值数组",
    // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
    for (i = 0; i < mVexNum; i++ )
        weights[i] = mMatrix[start][i];
    // 将第start个顶点的权值初始化为0。
    // 可以理解为"第start个顶点到它自身的距离为0"。
    weights[start] = 0;

    for (i = 0; i < mVexNum; i++)
    {
        // 由于从start开始的,因此不需要再对第start个顶点进行处理。
        if(start == i)
            continue;

        j = 0;
        k = 0;
        min = INF;
        // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
        while (j < mVexNum)
        {
            // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
            if (weights[j] != 0 && weights[j] < min)
            {
                min = weights[j];
                k = j;
            }
            j++;
        }

        // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
        // 将第k个顶点加入到最小生成树的结果数组中
        prims[index++] = mVexs[k];
        // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
        weights[k] = 0;
        // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
        for (j = 0 ; j < mVexNum; j++)
        {
            // 当第j个节点没有被处理,并且需要更新时才被更新。
            if (weights[j] != 0 && mMatrix[k][j] < weights[j])
                weights[j] = mMatrix[k][j];
        }
    }

    // 计算最小生成树的权值
    sum = 0;
    for (i = 1; i < index; i++)
    {
        min = INF;
        // 获取prims[i]在mMatrix中的位置
        n = getPosition(prims[i]);
        // 在vexs[0...i]中,找出到j的权值最小的顶点。
        for (j = 0; j < i; j++)
        {
            m = getPosition(prims[j]);
            if (mMatrix[m][n]<min)
                min = mMatrix[m][n];
        }
        sum += min;
    }
    // 打印最小生成树
    cout << "PRIM(" << mVexs[start] << ")=" << sum << ": ";
    for (i = 0; i < index; i++)
        cout << prims[i] << " ";
    cout << endl;
}

/* 
 * 获取图中的边
 */
EData* MatrixUDG::getEdges()
{
    int i,j;
    int index=0;
    EData *edges;

    edges = new EData[mEdgNum];
    for (i=0; i < mVexNum; i++)
    {
        for (j=i+1; j < mVexNum; j++)
        {
            if (mMatrix[i][j]!=INF)
            {
                edges[index].start  = mVexs[i];
                edges[index].end    = mVexs[j];
                edges[index].weight = mMatrix[i][j];
                index++;
            }
        }
    }

    return edges;
}

/* 
 * 对边按照权值大小进行排序(由小到大)
 */
void MatrixUDG::sortEdges(EData* edges, int elen)
{
    int i,j;

    for (i=0; i<elen; i++)
    {
        for (j=i+1; j<elen; j++)
        {
            if (edges[i].weight > edges[j].weight)
            {
                // 交换"边i"和"边j"
                swap(edges[i], edges[j]);
            }
        }
    }
}

/*
 * 获取i的终点
 */
int MatrixUDG::getEnd(int vends[], int i)
{
    while (vends[i] != 0)
        i = vends[i];
    return i;
}

/*
 * 克鲁斯卡尔(Kruskal)最小生成树
 */
void MatrixUDG::kruskal()
{
    int i,m,n,p1,p2;
    int length;
    int index = 0;          // rets数组的索引
    int vends[MAX]={0};     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
    EData rets[MAX];        // 结果数组,保存kruskal最小生成树的边
    EData *edges;           // 图对应的所有边

    // 获取"图中所有的边"
    edges = getEdges();
    // 将边按照"权"的大小进行排序(从小到大)
    sortEdges(edges, mEdgNum);

    for (i=0; i<mEdgNum; i++)
    {
        p1 = getPosition(edges[i].start);      // 获取第i条边的"起点"的序号
        p2 = getPosition(edges[i].end);        // 获取第i条边的"终点"的序号

        m = getEnd(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
        n = getEnd(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
        // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
        if (m != n)
        {
            vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
            rets[index++] = edges[i];           // 保存结果
        }
    }
    delete[] edges;

    // 统计并打印"kruskal最小生成树"的信息
    length = 0;
    for (i = 0; i < index; i++)
        length += rets[i].weight;
    cout << "Kruskal=" << length << ": ";
    for (i = 0; i < index; i++)
        cout << "(" << rets[i].start << "," << rets[i].end << ") ";
    cout << endl;
}

int main()
{
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    int matrix[][9] = {
             /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
      /*A*/ {   0,  12, INF, INF, INF,  16,  14},
      /*B*/ {  12,   0,  10, INF, INF,   7, INF},
      /*C*/ { INF,  10,   0,   3,   5,   6, INF},
      /*D*/ { INF, INF,   3,   0,   4, INF, INF},
      /*E*/ { INF, INF,   5,   4,   0,   2,   8},
      /*F*/ {  16,   7,   6, INF,   2,   0,   9},
      /*G*/ {  14, INF, INF, INF,   8,   9,   0}};
    int vlen = sizeof(vexs)/sizeof(vexs[0]);
    MatrixUDG* pG;

    // 自定义"图"(输入矩阵队列)
    //pG = new MatrixUDG();
    // 采用已有的"图"
    pG = new MatrixUDG(vexs, vlen, matrix);

    //pG->print();   // 打印图
    //pG->DFS();     // 深度优先遍历
    //pG->BFS();     // 广度优先遍历
    //pG->prim(0);   // prim算法生成最小生成树

    pG->kruskal();   // Kruskal算法生成最小生成树

    return 0;
}
View Code

 

 

本文来自http://www.cnblogs.com/skywang12345/p/3711500.html

posted @ 2018-10-08 23:40  抒抒说  阅读(1894)  评论(0编辑  收藏  举报