二叉堆的实现(数组)——c++

二叉堆的介绍

二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。示意图如下:

 

二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将"二叉堆的第一个元素"放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),只是实现上稍微有一丁点区别。
假设"第一个元素"在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i+1);
(02) 索引为i的左孩子的索引是 (2*i+2);
(03) 索引为i的父结点的索引是 floor((i-1)/2);

 

假设"第一个元素"在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i);
(02) 索引为i的左孩子的索引是 (2*i+1);
(03) 索引为i的父结点的索引是 floor(i/2);

注意:本文二叉堆的实现统统都是采用"二叉堆第一个元素在数组索引为0"的方式!

 

 

二叉堆的图文解析

图文解析是以"最大堆"来进行介绍的

1. 基本定义

 

template <class T>
class MaxHeap{
    private:
        T *mHeap;        // 数据
        int mCapacity;    // 总的容量
        int mSize;        // 实际容量

    private:
        // 最大堆的向下调整算法
        void filterdown(int start, int end);
        // 最大堆的向上调整算法(从start开始向上直到0,调整堆)
        void filterup(int start);
    public:
        MaxHeap();
        MaxHeap(int capacity);
        ~MaxHeap();

        // 返回data在二叉堆中的索引
        int getIndex(T data);
        // 删除最大堆中的data
        int remove(T data);
        // 将data插入到二叉堆中
        int insert(T data);
        // 打印二叉堆
        void print();
};

 

MaxHeap是最大堆的对应的类。它包括的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍。

 

2. 添加

假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:

如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。

/*
 * 最大堆的向上调整算法(从start开始向上直到0,调整堆)
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
template <class T>
void MaxHeap<T>::filterup(int start)
{
    int c = start;            // 当前节点(current)的位置
    int p = (c-1)/2;        // 父(parent)结点的位置 
    T tmp = mHeap[c];        // 当前节点(current)的大小

    while(c > 0)
    {
        if(mHeap[p] >= tmp)
            break;
        else
        {
            mHeap[c] = mHeap[p];
            c = p;
            p = (p-1)/2;   
        }       
    }
    mHeap[c] = tmp;
}
  
/* 
 * 将data插入到二叉堆中
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
int MaxHeap<T>::insert(T data)
{
    // 如果"堆"已满,则返回
    if(mSize == mCapacity)
        return -1;
 
    mHeap[mSize] = data;        // 将"数组"插在表尾
    filterup(mSize);    // 向上调整堆
    mSize++;                    // 堆的实际容量+1

    return 0;
}

insert(data)的作用:将数据data添加到最大堆中。当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。

 

3. 删除

假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:

如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。


注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!

 

/* 
 * 最大堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
template <class T>
void MaxHeap<T>::filterdown(int start, int end)
{
    int c = start;          // 当前(current)节点的位置
    int l = 2*c + 1;     // 左(left)孩子的位置
    T tmp = mHeap[c];    // 当前(current)节点的大小

    while(l <= end)
    {
        // "l"是左孩子,"l+1"是右孩子
        if(l < end && mHeap[l] < mHeap[l+1])
            l++;        // 左右两孩子中选择较大者,即mHeap[l+1]
        if(tmp >= mHeap[l])
            break;        //调整结束
        else
        {
            mHeap[c] = mHeap[l];
            c = l;
            l = 2*l + 1;   
        }       
    }   
    mHeap[c] = tmp;
}

/*
 * 删除最大堆中的data
 *
 * 返回值:
 *      0,成功
 *     -1,失败
 */
template <class T>
int MaxHeap<T>::remove(T data)
{
    int index;
    // 如果"堆"已空,则返回-1
    if(mSize == 0)
        return -1;

    // 获取data在数组中的索引
    index = getIndex(data); 
    if (index==-1)
        return -1;

    mHeap[index] = mHeap[--mSize];    // 用最后元素填补
    filterdown(index, mSize-1);        // 从index位置开始自上向下调整为最大堆

    return 0;
}

 

 

 

本文来自http://www.cnblogs.com/skywang12345/p/3610382.html

 

posted @ 2018-10-08 20:22  抒抒说  阅读(1054)  评论(0编辑  收藏  举报