二叉堆的实现(数组)——c++
二叉堆的介绍
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。示意图如下:
二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将"二叉堆的第一个元素"放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),只是实现上稍微有一丁点区别。
假设"第一个元素"在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i+1);
(02) 索引为i的左孩子的索引是 (2*i+2);
(03) 索引为i的父结点的索引是 floor((i-1)/2);
假设"第一个元素"在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i);
(02) 索引为i的左孩子的索引是 (2*i+1);
(03) 索引为i的父结点的索引是 floor(i/2);
注意:本文二叉堆的实现统统都是采用"二叉堆第一个元素在数组索引为0"的方式!
二叉堆的图文解析
图文解析是以"最大堆"来进行介绍的
1. 基本定义
template <class T> class MaxHeap{ private: T *mHeap; // 数据 int mCapacity; // 总的容量 int mSize; // 实际容量 private: // 最大堆的向下调整算法 void filterdown(int start, int end); // 最大堆的向上调整算法(从start开始向上直到0,调整堆) void filterup(int start); public: MaxHeap(); MaxHeap(int capacity); ~MaxHeap(); // 返回data在二叉堆中的索引 int getIndex(T data); // 删除最大堆中的data int remove(T data); // 将data插入到二叉堆中 int insert(T data); // 打印二叉堆 void print(); };
MaxHeap是最大堆的对应的类。它包括的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍。
2. 添加
假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:
如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。
/* * 最大堆的向上调整算法(从start开始向上直到0,调整堆) * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引) */ template <class T> void MaxHeap<T>::filterup(int start) { int c = start; // 当前节点(current)的位置 int p = (c-1)/2; // 父(parent)结点的位置 T tmp = mHeap[c]; // 当前节点(current)的大小 while(c > 0) { if(mHeap[p] >= tmp) break; else { mHeap[c] = mHeap[p]; c = p; p = (p-1)/2; } } mHeap[c] = tmp; } /* * 将data插入到二叉堆中 * * 返回值: * 0,表示成功 * -1,表示失败 */ template <class T> int MaxHeap<T>::insert(T data) { // 如果"堆"已满,则返回 if(mSize == mCapacity) return -1; mHeap[mSize] = data; // 将"数组"插在表尾 filterup(mSize); // 向上调整堆 mSize++; // 堆的实际容量+1 return 0; }
insert(data)的作用:将数据data添加到最大堆中。当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。
3. 删除
假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!
/* * 最大堆的向下调整算法 * * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * * 参数说明: * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */ template <class T> void MaxHeap<T>::filterdown(int start, int end) { int c = start; // 当前(current)节点的位置 int l = 2*c + 1; // 左(left)孩子的位置 T tmp = mHeap[c]; // 当前(current)节点的大小 while(l <= end) { // "l"是左孩子,"l+1"是右孩子 if(l < end && mHeap[l] < mHeap[l+1]) l++; // 左右两孩子中选择较大者,即mHeap[l+1] if(tmp >= mHeap[l]) break; //调整结束 else { mHeap[c] = mHeap[l]; c = l; l = 2*l + 1; } } mHeap[c] = tmp; } /* * 删除最大堆中的data * * 返回值: * 0,成功 * -1,失败 */ template <class T> int MaxHeap<T>::remove(T data) { int index; // 如果"堆"已空,则返回-1 if(mSize == 0) return -1; // 获取data在数组中的索引 index = getIndex(data); if (index==-1) return -1; mHeap[index] = mHeap[--mSize]; // 用最后元素填补 filterdown(index, mSize-1); // 从index位置开始自上向下调整为最大堆 return 0; }
本文来自http://www.cnblogs.com/skywang12345/p/3610382.html