Label Smoothing
简单的说,Label Smoothing就是把one-hot向量从[0,0,1,0,0,0,...,0]变成[0.01,0.01,0.8,0.01,0.01,0.01,...,0.01],用公式表示,就是
其中,k是类别数量,a是一个较小的数.这样做的目的是为了缓解模型过于武断的问题,增强模型的泛化能力,预防过拟合等等.但是也会带来一些问题,如增加了噪声,甚至造成欠拟合等等.
简单的说,Label Smoothing就是把one-hot向量从[0,0,1,0,0,0,...,0]变成[0.01,0.01,0.8,0.01,0.01,0.01,...,0.01],用公式表示,就是
其中,k是类别数量,a是一个较小的数.这样做的目的是为了缓解模型过于武断的问题,增强模型的泛化能力,预防过拟合等等.但是也会带来一些问题,如增加了噪声,甚至造成欠拟合等等.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
2022-07-29 Ubuntu18.04挂载错误后修复