51nod 1020 逆序排列 | dp

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。

由于逆序排列的数量非常大,因此只需计算并输出该数 Mod 10^9 + 7的结果就可以了。

第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数n,k。中间用空格分隔。(2 <= n <= 1000, 0 <= k <= 20000)

肯定是dp啦
我们考虑1~i的一个排列,一定是由1~i-1的排列在某个位置加一个i得到,所以dp[i][j]=∑dp[i-1][j-k],同理dp[i][j-1]=∑dp[o-1][j-1-k],
两个式子相减然后移项得到 dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-i]
初始化dp[i][0]=1;

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 #define P 1000000007 
 5 #define N 1010
 6 #define K 20010 
 7 typedef long long ll;
 8 using namespace std;
 9 int f[N][K],n,k,t;
10 void init()
11 {
12     for (int i=1;i<N;i++)
13         f[i][0]=1;
14     for (int i=2;i<N;i++)
15         for (int j=1;j<=i*(i-1)/2 && j<K;j++)
16         {
17             f[i][j]=(f[i][j-1]+f[i-1][j])%P;
18             if (j>=i)
19                 f[i][j]=(f[i][j]-f[i-1][j-i]+P)%P;
20         }
21 }
22 int main()
23 {
24     scanf("%d",&t);
25     init();
26     while (t--)
27     {
28         scanf("%d%d",&n,&k);
29         printf("%d\n",f[n][k]);
30     }
31     return 0;
32 } 

 



posted @ 2017-11-19 19:50  MSPqwq  阅读(136)  评论(0编辑  收藏  举报