numpy基础--通用函数:快速的元素级数组函数

以下代码的前提:import numpy as np

通用函数(即ufunc)是一种对narray中的数组执行元素级运算的函数。可以看作简单函数(接受一个或多个标量值,并产生一个或多个标量值)的矢量化包装器。

官方说明文档:Universal functions (ufunc) — NumPy v1.21 Manual

1.1 一元ufunc(接受1个数组)

输入参数为一个数组,输出一个数组。举例进行说明:

numpy.sqrt方法,对数组的每个元素的进行开方;numpy.sqrt — NumPy v1.21 Manual

numpy.exp方法,对数组的每个元素进行以e为底的指数运算。numpy.exp — NumPy v1.21 Manual

numpy.exp2方法,对数组的每个元素进行以2为底的指数运算。

numpy.square方法,对数组的每个元素进行平方运算。

还有许多其它的运算,可参考官方文档:Universal functions (ufunc) — NumPy v1.21 Manual

1 >>> arr = np.arange(10)
2 >>> np.sqrt(arr) 
3 array([0.        , 1.        , 1.41421356, 1.73205081, 2.        ,
4        2.23606798, 2.44948974, 2.64575131, 2.82842712, 3.        ])
5 >>>
6 >>> np.exp(arr)
7 array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
8        5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,
9        2.98095799e+03, 8.10308393e+03])

>>> x = [1, 2, 3]
>>> x = array([1, 2, 3])
>>> x
array([1, 2, 3])
>>> y = np.exp2(x)
>>> y
array([2., 4., 8.])
>>> z = np.square(x)
>>> z
array([1, 4, 9], dtype=int32)

1.2 二元ufunc(接受2个数组)

接受两个数组作为输入变量,返回一个数组。举例进行说明:

numpy.maximum方法,数组元素逐个进行比较,返回最大值;

numpy.minimum方法,数组元素逐个进行比较,返回最小值;

numpy.add方法,数组元素逐个相加;

numpy.subtract方法,数组元素逐个相减。

其它运算参考官网:Universal functions (ufunc) — NumPy v1.21 Manual

 1 >>> x = np.random.randn(8) 
 2 >>> y = np.random.randn(8) 
 3 >>> x
 4 array([ 0.43266866,  1.69407984, -0.55230851,  0.5299432 ,  0.16398048,
 5        -0.85688016,  0.17670668,  0.27088301])
 6 >>> y
 7 array([-7.44071773e-01, -1.96733697e-01,  2.63125844e-01,  1.02443527e-03,
 8         1.43143711e+00,  4.07087722e-02,  3.69629757e-01,  8.49162829e-01])
 9 >>> np.maximum(x, y)
10 array([0.43266866, 1.69407984, 0.26312584, 0.5299432 , 1.43143711,
11        0.04070877, 0.36962976, 0.84916283])

array([1, 2, 3])
>>> y = array([2, 3, 4]) 
>>> np.add(x, y) 
array([3, 5, 7])
>>> np.subtract(x, y) 
array([-1, -1, -1])

1.3 ufunc返回多个数组

如numpy.modf方法,将数组的小数部分和整数部分以两个独立数组的形式返回。

1 >>> arr = np.random.randn(7) * 5 
2 >>> arr
3 array([-5.13857878, -0.91271076,  3.55618943, -3.40179856, -7.32568638,
4        -1.74803645,  3.1201454 ])
5 >>> np.modf(arr)
6 (array([-0.13857878, -0.91271076,  0.55618943, -0.40179856, -0.32568638,
7        -0.74803645,  0.1201454 ]), array([-5., -0.,  3., -3., -7., -1.,  3.]))
8 >>>

1.4 常用一元ufunc和二元ufunc函数

一元ufunc
函数 说明
abs、fabs 计算整数、浮点数或复数的绝对值。对于非复数值,可以使用更快的fabs
sqrt 计算各元素的平方根,相当于arr ** 0.5
square 计算各元素的平方,相当于arr ** 2
exp 计算各元素的指数ex
log、log10、log2、log1p 分别为自然对数(底数为e)、底数为10的log、底数为2的log、log(1+x)
sign 计算各元素的正负号:1(正数)、0(零)、-1(负数)
ceil 计算各元素的ceiling值,即大于等于该值的最小整数
floor 计算各元素的floor值,即小于等于该值的最大整数
rint 将各元素值四舍五入到最接近的整数,保留dtype
modf 将数组的小数部分和整数部分以两个独立数组的形式返回
isnan 返回一个表示“哪些值是NaN(这不是一个数字)”的布尔型数组
isfinite、isinf 分别返回一个表示“哪些元素是有穷的(非inf,非NaN)”或“哪些元素是无穷的”的布尔型数组
cos、cosh、sin、sinh、tan、tanh 普通型和双曲型三角函数
arccos、arccosh、arcsin、arcsinh、arctan、arctanch 反三角函数
logical_not 计算各元素not x的真值,相当于~arr
二元ufunc
add 将数组中对应元素相加
subtract 从第一个数组中减去第二个数组中的元素
multiply 数组元素相乘
divide、floor_divide 除法或向下圆整除法(丢弃余数)
power 对第一个数组中的元素A,根据第二个数组中的相应元素B,计算AB
maximum、fmax 元素级的最大值计算,fmax将忽略NaN
minimum、fmin 元素级的最小值计算,fmin将忽略NaN
mod 元素级的求模运算(除法的余数)
copysign 将第二个数组中的值的符号复制给第一个数组中的值
greater、greater_equal、less、less_equal、equal、not_equal 执行元素级的比较运算,最终产生布尔型数组。相当于中缀运算符>、>=、<、<=、==、!=
logic_and、logic_or、logic_xor 执行元素级的真值逻辑运算,相当于中缀运算符&、|、^
posted @ 2020-02-01 11:01  zhengcixi  阅读(396)  评论(0编辑  收藏  举报
回到顶部