[bzoj] 2694 Lcm || 莫比乌斯反演
原题
定义整数a,b,求所有满足条件的lcm(a,b)的和:
1<=a<=A
1<=b<=B
∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gcd(a,b)的约数)
输出答案对2^30取模。
要求gcd(a,b)不能含平方因子,所以gcd(a,b)一定是mu不等于0的数。
那么我们设所有满足条件的数为p
其余与bzoj 2693是一样的,推倒见这里!
//敲公式累死了……
#include<cstdio>
#include<algorithm>
#define N 4000000
#define p (1<<30)
using namespace std;
int n,m,t,prime[N+10],miu[N+10],sum[N+10];
bool f[N+10];
void init()
{
miu[1]=1;
for (int i=2;i<=N;i++)
{
if (!f[i])
{
prime[++prime[0]]=i;
miu[i]=-1;
}
for (int j=1;j<=prime[0] && prime[j]*i<=N;j++)
{
f[i*prime[j]]=1;
if (i%prime[j]==0)
{
miu[i*prime[j]]=0;
break;
}
miu[i*prime[j]]=-miu[i];
}
}
for (int i=1;i<=N;i++)
if (miu[i])
for (int j=1;j*i<=N;j++) sum[j*i]+=miu[j]*j*j*i;
for (int i=1;i<=N;i++) sum[i]+=sum[i-1];
}
int calc(int x,int y)
{
int t1=(x+1)*x/2,t2=(y+1)*y/2;
return t1*t2;
}
int main()
{
scanf("%d",&t);
init();
while (t--)
{
scanf("%d%d",&n,&m);
if (n>m) swap(n,m);
int ans=0;
for (int i=1,last;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ans=ans+(sum[last]-sum[i-1])*calc(n/i,m/i);
}
printf("%d\n",(ans%p+p)%p);
}
return 0;
}