[poj] 2749 building roads
原题
2-SAT+二分答案!
最小的最大值,这肯定是二分答案。而我们要2-SATcheck是否在该情况下有可行解。
对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来实现连边,然后跑2-SAT判断是否有可行解
O(n^2logn)
想起来和听起来都很难写,事实上还好吧…
#include<cstdio>
#include<algorithm>
#include<stack>
#include<cstring>
#define inf 97797977
#define N 510
using namespace std;
int n,m,A,B,lovex[2*N],lovey[2*N],hatex[2*N],hatey[2*N],dis1[N],dis2[N],dis,sx1,sx2,sy1,sy2,x[N],y[N],head[2*N];
int bel[2*N],cnt=1,l,r=inf,dfn[2*N],low[2*N],t,mid,sum;
stack <int> stk;
bool instk[2*N];
struct hhh
{
int to,next;
}edge[10*N*N];
int read()
{
int ans=0,fu=1;
char j=getchar();
for (;(j<'0' || j>'9') && j!='-';j=getchar()) ;
if (j=='-') j=getchar(),fu=-1;
for (;j>='0' && j<='9';j=getchar()) ans*=10,ans+=j-'0';
return ans*fu;
}
void add(int u,int v)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
bool build()
{
for (int i=1;i<=B;i++)
{
add(lovex[i],lovey[i]);
add(lovey[i],lovex[i]);
add(lovex[i]+n,lovey[i]+n);
add(lovey[i]+n,lovex[i]+n);
}
for (int i=1;i<=A;i++)
{
add(hatex[i],hatey[i]+n);
add(hatex[i]+n,hatey[i]);
add(hatey[i]+n,hatex[i]);
add(hatey[i],hatex[i]+n);
}
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++)
{
int t=0;
if (dis1[i]+dis+dis2[j]>mid)
{
add(i,j);
add(j+n,i+n);
t++;
}
if (dis2[i]+dis+dis1[j]>mid)
{
add(i+n,j+n);
add(j,i);
t++;
}
if (dis1[i]+dis1[j]>mid)
{
add(i,j+n);
add(j,i+n);
t++;
}
if (dis2[i]+dis2[j]>mid)
{
add(i+n,j);
add(j+n,i);
t++;
}
if (t==4) return 0;
}
return 1;
}
void Tarjan(int u)
{
dfn[u]=low[u]=++t;
stk.push(u);
instk[u]=1;
for (int i=head[u],v;i;i=edge[i].next)
{
v=edge[i].to;
if (!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (instk[v]) low[u]=min(low[u],dfn[v]);
}
if (low[u]==dfn[u])
{
sum++;
int t;
do
{
t=stk.top();
bel[t]=sum;
stk.pop();
instk[t]=0;
}while(t!=u);
}
}
bool check()
{
for (int i=1;i<=n;i++)
if (bel[i]==bel[i+n]) return 0;
return 1;
}
int get1(int i)
{
return abs(sx1-x[i])+abs(sy1-y[i]);
}
int get2(int i)
{
return abs(sx2-x[i])+abs(sy2-y[i]);
}
int main()
{
n=read();
A=read();
B=read();
sx1=read();
sy1=read();
sx2=read();
sy2=read();
dis=abs(sx1-sx2)+abs(sy1-sy2);
for (int i=1;i<=n;i++)
{
x[i]=read();
y[i]=read();
}
for (int i=1;i<=A;i++)
{
hatex[i]=read();
hatey[i]=read();
}
for (int i=1;i<=B;i++)
{
lovex[i]=read();
lovey[i]=read();
}
for (int i=1;i<=n;i++)
{
dis1[i]=get1(i);
dis2[i]=get2(i);
}
while (l<r)
{
mid=(l+r)>>1;
cnt=1;
memset(dfn,0,sizeof(dfn));
memset(bel,0,sizeof(bel));
memset(head,0,sizeof(head));
if (build())
{
t=1;
sum=1;
for (int i=1;i<=2*n;i++)
if (!dfn[i]) Tarjan(i);
if (check()) r=mid;
else l=mid+1;
}
else l=mid+1;
}
printf("%d",l>=inf?-1:l);
return 0;
}