UVa1515 Pool construction 水塘 (NWERC2011)
传送
题面:输入一个\(n\)行\(m\)列的字符矩阵,草地用#
表示,洞用.
表示。可以把草改成洞,每格花费\(d\),也可以把洞填上草,每格花费\(f\)。如果草和洞相邻,必须要在草洞之间修围栏,每条边花费\(b\)。整个矩阵第一行/列和最后一行/列必须都是草。问最小花费。
这题如果练过一些最小割的相关模型就好做了。
首先将地图中的每个格点看成图中的点,然后按照最小割的思想:在分割后的图中,和源点相连的点都是草,和汇点相连的点都是坑。
那么只用考虑达成上述目标的代价:
- 如果一个格点\(x\)是草,从\(s\)向\(x\)连边,容量是修改成坑的费用\(d\),表示如果它不属于草的集合,就要付出\(d\)的代价。
- 如果一个格点\(x\)是坑,从\(x\)向\(t\)连边,容量是修改成草的费用\(f\),表示如果它不属于坑的集合,就要付出\(f\)的代价。
- 对于相邻的格点,如果不相同,就连一条容量为\(b\)的边,代表如果草和坑都要保留,就必须修建一道代价为\(b\)的墙。
- 对于最外圈的格点\(x\),直接记下修改成草的费用,并从\(s\)向\(x\)连一条容量为无穷的边,表示改变他的代价是无穷大。
最后跑最大流即答案。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<queue>
#include<assert.h>
#include<ctime>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
#define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 2505;
const int maxs = 55;
const int maxe = 1e6 + 5;
In ll read()
{
ll ans = 0;
char ch = getchar(), las = ' ';
while(!isdigit(ch)) las = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(las == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
char s[maxs][maxs];
int n, m, d, f, b, S, t;
struct Edge
{
int nxt, to, cap, flow;
}e[maxe];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], y, w, 0};
head[x] = ecnt;
e[++ecnt] = (Edge){head[y], x, 0, 0};
head[y] = ecnt;
}
int sum = 0;
int dx[] = {0, 0, 1, 0, -1}, dy[] = {0, 1, 0, -1, 0};
In void buildGraph()
{
sum = 0;
S = 0, t = n * m + 1;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
{
int x = (i - 1) * m + j;
if(i == 1 || i == n || j == 1 || j == m)
{
if(s[i][j] == '.') sum += f;
addEdge(S, x, INF);
}
else
{
if(s[i][j] == '.') addEdge(x, t, f);
else addEdge(S, x, d);
}
for(int k = 1; k <= 4; ++k)
{
int nx = i + dx[k], ny = j + dy[k];
if(nx && nx <= n && ny && ny <= m) addEdge(x, (nx - 1) * m + ny, b);
}
}
}
int dis[maxn];
In bool bfs()
{
Mem(dis, 0), dis[S] = 1;
queue<int> q; q.push(S);
while(!q.empty())
{
int now = q.front(); q.pop();
for(int i = head[now], v; ~i; i = e[i].nxt)
if(e[i].cap > e[i].flow && !dis[v = e[i].to])
dis[v] = dis[now] + 1, q.push(v);
}
return dis[t];
}
int cur[maxn];
In int dfs(int now, int res)
{
if(now == t || res == 0) return res;
int flow = 0, f;
for(int& i = cur[now], v; ~i; i = e[i].nxt)
{
if(dis[v = e[i].to] == dis[now] + 1 && (f = dfs(v, min(res, e[i].cap - e[i].flow))) > 0)
{
e[i].flow += f, e[i ^ 1].flow -= f;
flow += f, res -= f;
if(res == 0) break;
}
}
return flow;
}
In int minCut()
{
int flow = 0;
while(bfs())
{
memcpy(cur, head, sizeof(head));
flow += dfs(S, INF);
}
return flow;
}
int main()
{
int T = read();
while(T--)
{
Mem(head, -1), ecnt = -1;
m = read(), n = read();
d = read(), f = read(), b = read();
for(int i = 1; i <= n; ++i) scanf("%s", s[i] + 1);
buildGraph();
write(sum + minCut()), enter;
}
return 0;
}