[NOI2015]品酒大会
嘟嘟嘟
以前学SAM的时候看到过这道题,但因为当时才疏学浅,就姑且弃疗。如今刷到NOI2015,又遇到了这道题。
既然在刷NOI的题,那首先就应该想暴力。
\(O(n ^ 3)\)的暴力就是枚举长度,再枚举点对,哈希判相同子串。太捞了,不想写。
\(O(n ^ 2)\)也比较好想。我们把枚举点对的过程优化掉。开一个map,相同哈希值的子串存到一块,然后扫一遍的的时候先查跟他哈希值相同的子串有多少个,再把这个子串的哈希值加到map中。
如果直接取模哈希+map,可能会面临这哈希冲突和TLE的风险,果不其然,一交上去只有20分。所以我写了个双哈希+哈希表,就是我们把取模的哈希建成哈希表,然后为了防止冲突,在表里找的是这个子串的自然溢出哈希值。这样就特别稳了。期望得分40分,实际得分50hhhh。
暴力代码会在最后放。
下面开始谈谈正解。
先想第一问。
考虑一个节点的endpos的数量就是这类子串在原串中的出现次数,那么对于一个节点,记他的endpos数量为\(siz\),那么能匹配的点对就是\(\frac{siz * (siz - 1)}{2}\)。这是长度为\([len[fa] + 1, len[u]]\)的子串能匹配的点对数量,我们把这个长度区间的答案都加上这个值。刚开始我zz的想线段树,想了一会儿发现差分不就得了。
接下来第二问。
如果一个子串能匹配,那么他的子串必定能匹配。对应的就是后缀树上一个点的最优解是他的所有子树中的最优解。而因为有负数,所以我们要维护最大值,次大值,最小值,次小值。然后如果一个点是原串中的一个结束位置,就尝试\(a_{id[i]}\)更新这些值,否则取子树的最优解。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<assert.h>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const ll INF = 1e18; //别忘了答案会爆int
const db eps = 1e-8;
const int maxn = 3e5 + 5;
In ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen("ha.in", "r", stdin);
freopen("ha.out", "w", stdout);
#endif
}
char s[maxn];
int n;
ll a[maxn];
struct Sam
{
int cnt, las;
int tra[maxn << 1][27], link[maxn << 1], len[maxn << 1], siz[maxn << 1], id[maxn << 1];
In void insert(int c, int x)
{
int now = ++cnt, p = las;
len[now] = len[las] + 1;
siz[now] = 1, id[now] = x;
while(~p && !tra[p][c]) tra[p][c] = now, p = link[p];
if(p == -1) link[now] = 0;
else
{
int q = tra[p][c];
if(len[q] == len[p] + 1) link[now] = q;
else
{
int clo = ++cnt;
memcpy(tra[clo], tra[q], sizeof(tra[q]));
len[clo] = len[p] + 1;
link[clo] = link[q], link[q] = link[now] = clo;
while(~p && tra[p][c] == q) tra[p][c] = clo, p = link[p];
}
}
las = now;
}
int buc[maxn << 1], pos[maxn << 1];
In void sort()
{
for(int i = 1; i <= cnt; ++i) ++buc[len[i]];
for(int i = 1; i <= cnt; ++i) buc[i] += buc[i - 1];
for(int i = 1; i <= cnt; ++i) pos[buc[len[i]]--] = i;
}
ll tot[maxn], sum[maxn], Max1[maxn << 1], Max2[maxn << 1], Min1[maxn << 1], Min2[maxn << 1];
In void get_max(int now, ll d)
{
if(abs(d) == INF) return;
if(d > Max1[now]) Max2[now] = Max1[now], Max1[now] = d;
else if(d > Max2[now]) Max2[now] = d;
}
In void get_min(int now, ll d)
{
if(abs(d) == INF) return;
if(d < Min1[now]) Min2[now] = Min1[now], Min1[now] = d;
else if(d < Min2[now]) Min2[now] = d;
}
In void dfs()
{
for(int i = 0; i <= cnt; ++i)
{
Max1[i] = Max2[i] = -INF;
Min1[i] = Min2[i] = INF;
if(i <= n) sum[i] = -INF;
}
sort();
for(int i = cnt; i; --i)
{
int now = pos[i], fa = link[now];
if(id[now]) get_max(now, a[id[now]]), get_min(now, a[id[now]]); //刚开始把id[now]写成了now
if(siz[now] > 1)
{
ll tp = 1LL * siz[now] * (siz[now] - 1) / 2;
tot[len[fa] + 1] += tp, tot[len[now] + 1] -= tp;
sum[len[now]] = max(sum[len[now]], max(Max1[now] * Max2[now], Min1[now] * Min2[now]));
}
get_max(fa, Max1[now]), get_max(fa, Max2[now]);
get_min(fa, Min1[now]), get_min(fa, Min2[now]);
siz[fa] += siz[now];
}
for(int i = 1; i <= n; ++i) tot[i] += tot[i - 1];
for(int i = n; i; --i) if(tot[i + 1]) sum[i] = max(sum[i], sum[i + 1]);
//tot[i] = 0的时候sum[i]不能用来更新答案
write(1LL * n * (n - 1) / 2), space, write(max(Max1[0] * Max2[0], Min1[0] * Min2[0])), enter;
for(int i = 1; i < n; ++i) write(tot[i]), space, write(tot[i] ? sum[i] : 0), enter;
}
In void _Print()
{
for(int i = 1; i <= cnt; ++i) printf("#%d fa:%d len:%d\n", i, link[i], len[i]);
}
}S;
int main()
{
MYFILE();
S.link[0] = -1;
n = read(); scanf("%s", s);
for(int i = 1; i <= n; ++i) a[i] = read();
reverse(s, s + n);
reverse(a + 1, a + n + 1);
for(int i = 0; i < n; ++i) S.insert(s[i] - 'a', i + 1);
//S._Print();
S.dfs();
return 0;
}
50分暴力 ```c++ #include
int n;
char s[maxn];
ll a[maxn];
define pr pair<ll, ll>
define mp make_pair
struct Hash
{
int st[maxn], top;
int head[MOD], hcnt;
int nxt[maxn], w[maxn];
ll Min[maxn], Max[maxn];
ull to[maxn];
In void clear()
{
while(top) head[st[top--]] = 0;
top = hcnt = 0;
}
In void U(int h, ull h2, ll val)
{
for(int i = head[h]; i; i = nxt[i])
if(to[i] == h2)
{
++w[i];
Min[i] = min(Min[i], val);
Max[i] = max(Max[i], val);
return;
}
if(!head[h]) st[++top] = h;
++hcnt; nxt[hcnt] = head[h];
to[hcnt] = h2; w[hcnt] = 1;
Min[hcnt] = Max[hcnt] = val;
head[h] = hcnt;
}
In pr Q(int h, ull h2, ll val)
{
for(int i = head[h]; i; i = nxt[i])
if(to[i] == h2) return mp(w[i], max(val * Min[i], val * Max[i]));
return mp(0, 0);
}
}HA;
In ll inc(ll a, ll b) {return a + b < MOD ? a + b : a + b - MOD;}
ll has[maxn], p[maxn];
ull has2[maxn], p2[maxn];
In int H(int L, int R) {return inc(has[R], MOD - has[L - 1] * p[R - L + 1] % MOD);}
In ull H2(int L, int R) {return has2[R] - has2[L - 1] * p2[R - L + 1];}
In bool solve0(int len)
{
ll tot = 0, ret = -INF;
for(int i = 1; i <= n - len + 1; ++i)
{
int h = H(i, i + len - 1);
ull h2 = H2(i, i + len - 1);
pr tp = HA.Q(h, h2, a[i]);
if(tp.first) tot += tp.first, ret = max(ret, tp.second);
HA.U(h, h2, a[i]);
}
HA.clear();
write(tot), space, write(tot ? ret : 0), enter;
return tot;
}
In void work0()
{
HA.top = HA.hcnt = 0;
Mem(HA.head, 0);
p[0] = p2[0] = 1;
for(int i = 1; i <= n; ++i)
{
has[i] = (has[i - 1] * BAS + s[i]) % MOD;
has2[i] = has2[i - 1] * BAS2 + s[i];
p[i] = p[i - 1] * BAS % MOD;
p2[i] = p2[i - 1] * BAS2;
}
ll Min1 = INF, Min2 = INF, ans0 = -INF;
for(int i = 1; i <= n; ++i)
{
if(a[i] < Min1) Min2 = Min1, Min1 = a[i];
else if(a[i] < Min2) Min2 = a[i];
}
ans0 = max(ans0, Min1 * Min2);
Min1 = -INF, Min2 = -INF;
for(int i = 1; i <= n; ++i)
{
if(a[i] > Min1) Min2 = Min1, Min1 = a[i];
else if(a[i] > Min2) Min2 = a[i];
}
ans0 = max(ans0, Min1 * Min2);
write(1LL * n * (n - 1) / 2), space, write(ans0), enter;
for(int i = 1; i < n; ++i)
if(!solve0(i))
{
for(int j = i + 1; j < n; ++j) puts("0 0");
break;
}
}
int main()
{
MYFILE();
n = read(); scanf("%s", s + 1);
for(int i = 1; i <= n; ++i) a[i] = read();
if(n <= 10000) {work0(); return 0;}
work0();
return 0;
}