dijkstra之zkw线段树优化

其实特别好理解,我们只要写一个数据结构(线段树)支持一下操作:
1.插入一个数\(x\)
2.查询当前数据结构中最小的数的插入编号。
3.删除插入编号为\(x\)的数。


第一眼看成可持久化了
其实就是一个单点修改,区间(全局)查询的线段树。
zkw线段树在普通线段树的基础上进行了优化(卡常神器)。
我们记录每一个点在线段树中叶子节点的编号。这样修改的时候就不用递归下去找了,直接一个while循环pushup上来就完事。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{
	ll ans = 0;
	char ch = getchar(), last = ' ';
	while(!isdigit(ch)) last = ch, ch = getchar();
	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
	if(last == '-') ans = -ans;
	return ans;
}
inline void write(ll x)
{
	if(x < 0) x = -x, putchar('-');
	if(x >= 10) write(x / 10);
	putchar(x % 10 + '0');
}

int n, m, s;
struct Edge
{
	int nxt, to, w;
}e[maxn << 1];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
	e[++ecnt] = (Edge){head[x], y, w};
	head[x] = ecnt;
}

int Min[maxn << 2], id[maxn << 2], pos[maxn << 2];
In void pushup(int now)
{
	if(Min[now << 1] <= Min[now << 1 | 1]) Min[now] = Min[now << 1], id[now] = id[now << 1];
	else Min[now] = Min[now << 1 | 1], id[now] = id[now << 1 | 1];
}
In void build(int L, int R, int now)
{
	if(L == R) 
	{
		Min[now] = INF; id[now] = L; 
		pos[L] = now;
		return;
	}
	int mid = (L + R) >> 1;
	build(L, mid, now << 1), build(mid + 1, R, now << 1 | 1);
	pushup(now);
}
In void update(int now, int d)
{
	Min[now] = d;
	while(now >> 1) pushup(now >> 1), now >>= 1;
}

bool in[maxn];
int dis[maxn];
In void dijkstra(int s)
{
	Mem(dis, 0x3f), dis[s] = 0;
	update(pos[s], dis[s]);
	while(Min[1] ^ INF)
	{
		int now = id[1]; update(pos[now], INF);
		if(in[now]) continue;
		in[now] = 1;
		for(int i = head[now], v; ~i; i = e[i].nxt)
		{
			if(dis[v = e[i].to] > dis[now] + e[i].w)
			{
				dis[v] = dis[now] + e[i].w;
				update(pos[v], dis[v]);
			}
		}
	}
}

int main()
{
	Mem(head, -1);
	n = read(), m = read(), s = read();
	build(1, n, 1);
	for(int i = 1; i <= m; ++i)
	{
		int x = read(), y = read(), w = read();
		addEdge(x, y, w);
	}
	dijkstra(1);
	for(int i = 1; i <= n; ++i) write(dis[i]), space; enter;
	return 0;
}
posted @ 2019-05-04 22:34  mrclr  阅读(547)  评论(0编辑  收藏  举报