[CQOI2018]九连环
嘟嘟嘟
对于这种找规律的题,我向来是不会的。
通过大佬们的各种打表找规律、神奇dp等方法,我们得到了答案就是\(\lfloor \frac{2 ^ {n + 1}}{3} \rfloor\)。
高精是显然的,但是还得用fft,毕竟这是省选题。
刚开始我一运行就RE,都不让你输入,后来才发现是数组开到1e6太大了(这怎么就大了!?)
其次别忘了高精里面的数都是倒着存的,所以做除法的时候得倒着来,最后再把数组倒过来。
然后高精fft借鉴了一下兔哥的代码,把原来的代码简化了许多。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const db PI = acos(-1);
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int rev[maxn];
struct Comp
{
db x, y;
In Comp operator + (const Comp& oth)const
{
return (Comp){x + oth.x, y + oth.y};
}
In Comp operator - (const Comp& oth)const
{
return (Comp){x - oth.x, y - oth.y};
}
In Comp operator * (const Comp& oth)const
{
return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x};
}
friend In void swap(Comp& a, Comp& b)
{
swap(a.x, b.x); swap(a.y, b.y);
}
};
In void fft(Comp* a, int len, int flg)
{
for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int i = 1; i < len; i <<= 1)
{
Comp omg = (Comp){cos(PI / i), sin(PI / i) * flg};
for(int j = 0; j < len; j += (i << 1))
{
Comp o = (Comp){1, 0};
for(int k = 0; k < i; ++k, o = o * omg)
{
Comp tp1 = a[k + j], tp2 = a[k + j + i] * o;
a[k + j] = tp1 + tp2, a[k + j + i] = tp1 - tp2;
}
}
}
}
struct Big
{
int a[maxn], len;
In void init() {Mem(a, 0); len = 0;}
In Big operator * (const Big& oth)const
{
static Comp A[maxn], B[maxn];
int Len = 1, lim = 0;
while(Len < len + oth.len - 1) Len <<= 1, ++lim;
for(int i = 0; i < Len; ++i)
{
A[i] = (Comp){i < len ? a[i] : 0, 0}; //这个很重要
B[i] = (Comp){i < oth.len ? oth.a[i] : 0, 0};
}
for(int i = 0; i < Len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
fft(A, Len, 1); fft(B, Len, 1);
for(int i = 0; i < Len; ++i) A[i] = A[i] * B[i];
fft(A, Len, -1);
static Big ret; ret.init(); ret.len = len + oth.len - 1;
for(int i = 0; i < ret.len; ++i) ret.a[i] = (int)(A[i].x / Len + 0.5);
for(int i = 0; i < ret.len; ++i) ret.a[i + 1] += ret.a[i] / 10, ret.a[i] %= 10;
if(ret.a[ret.len]) ++ret.len; //因为最多只会进一位,所以就不用while啦
return ret;
}
In Big operator / (int x)
{
static Big ret; ret.init();
for(int i = len - 1, tp = 0; i >= 0; --i)
{
tp = tp * 10 + a[i];
if(ret.len) ret.a[ret.len++] = tp / x;
else if(tp >= x) ret.a[ret.len++] = tp / x;
tp %= x;
}
reverse(ret.a, ret.a + ret.len);
return ret;
}
In void out()
{
for(int i = len - 1; i >= 0; --i) write(a[i]);
}
}A, ret;
int main()
{
int T = read();
while(T--)
{
int n = read() + 1;
A.init(); ret.init();
A.len = ret.len = 1;
A.a[0] = 2; ret.a[0] = 1;
for(; n; n >>= 1, A = A * A)
if(n & 1) ret = ret * A;
ret = ret / 3;
ret.out(), enter;
}
return 0;
}