POJ2728 Desert King

嘟嘟嘟


一句话:最优比率生成树。


因为是完全图,所以kruskal会TLE,还必须用prim。为此现学了一下。
prim的大概流程是这样的:
1.先随便选一个点
2.从通过这个点的所有出边更新所有点到现在的联通块的最小距离。
3.选离联通块最近的点加入块中,答案加上该条边。
4.重复第2步\(n - 1\)次。
复杂度\(O(n ^ 2)\)
所以这道题的总复杂度为\(O(n ^ 2 \log{x})\)\(x\)为值域,开到\(1e9\)会TLE,其实\(100\)就够了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-6;
const int maxn = 1e3 + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}

int n;
struct Node
{
  int x, y, p;
}t[maxn];

db dis[maxn], mid;
bool vis[maxn];
db Fabs(db x) {return x > 0 ? x : -x;}
inline db Dis(const int& i, const int& j)
{
  return sqrt((t[i].x - t[j].x) * (t[i].x - t[j].x) + (t[i].y - t[j].y) * (t[i].y - t[j].y));
}
inline db calc(const int& i, const int& j)
{
  return 1.0 * Fabs(t[i].p - t[j].p) - mid * Dis(i, j);
}
inline bool judge()
{
  for(int i = 1; i <= n; ++i) vis[i] = 0, dis[i] = INF;
  int now = 1, cnt = 0;
  db ret = 0;
  while(++cnt < n)
    {
      vis[now] = 1;
      for(int i = 1; i <= n; ++i) if(!vis[i]) dis[i] = min(dis[i], calc(now, i));
      db Min = INF;
      for(int i = 1; i <= n; ++i) if(!vis[i] && dis[i] < Min) Min = dis[i], now = i;
      ret += Min;
    }
  return ret > eps;
}

int main()
{
  while(scanf("%d", &n) && n)
    {
      for(int i = 1; i <= n; ++i) t[i].x = read(), t[i].y = read(), t[i].p = read();
      db L = 0, R = 100;
      while(R - L > eps)
	{
	  mid = (R + L) / 2;
	  if(judge()) L = mid;
	  else R = mid;
	}
      printf("%.3f\n", L);
    }
  return 0;
}
posted @ 2018-12-17 19:22  mrclr  阅读(141)  评论(0编辑  收藏  举报