[APIO2010]特别行动队
嘟嘟嘟
这道题dp式特别好想:
dp[i]=maxi−1j=0(dp[j]+f(s[i]−s[j]))
其中f(x)=ax2+bx+c,s[i]=∑ij=1x[j]。
但是O(n2)过不了,需要斜率优化。
勇敢的把项拆开得到
dp[i]=max(dp[j]−b∗s[j]+a∗s[j]2−2a∗s[i]∗s[j])+a∗s[i]2+b∗s[i]+c
然后就是套路:把这个式子看成b=y−k∗x,那么
y=dp[j]−b∗s[j]+a∗s[j]2,
k=2a∗s[i],
x=s[j],
b=dp[i]−a∗s[i]2−b∗s[i]−c。
方便的是x是单调递增的,k是单调递减的,于是用最朴素的单调队列维护上凸包即可。
斜率优化写的还是不太熟练
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e6 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - '0'; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, a, b, c;
ll sum[maxn], dp[maxn];
int q[maxn], l = 0, r = 0;
#define x(i) sum[i]
#define k(i) (2 * a * sum[i])
#define y(i) (dp[i] - b * sum[i] + a * sum[i] * sum[i])
db slope(int i, int j)
{
return 1.0 * (y(i) - y(j)) / (x(i) - x(j));
}
int main()
{
n = read();
a = read(), b = read(), c = read();
for(int i = 1, x; i <= n; ++i) x = read(), sum[i] = sum[i - 1] + x;
for(int i = 1; i <= n; ++i)
{
while(l < r && slope(q[l], q[l + 1]) > k(i)) l++;
dp[i] = y(q[l]) - k(i) * x(q[l]) + a * sum[i] * sum[i] + b * sum[i] + c;
while(l < r && slope(q[r - 1], q[r]) <= slope(q[r], i)) r--;
q[++r] = i;
}
write(dp[n]), enter;
return 0;
}
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步