PokerNet-poker recognition: 基于人工神经网络的扑克识别 (5)
结果1
void computeBCValue(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names,
int current_det_fps = -1, int current_cap_fps = -1)
{
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
Cardsets cardsets;
int tempx = 0;
vector<bbox_t> mypoints; //
for (auto &i : result_vec) {
if (i.prob < confidencetheta) { // if I am not confident than 50%, skip this poker
continue;
}
// here we compute the distance w.r.t (0,0)
if (i.h < i.w) {// 3rd
if (i.prob > cardsets.confidence[2]) {
cardsets.confidence[2] = i.prob;
cardsets.cardvalues[2] = Point3f(i.x, i.y, i.obj_id);
}
}
else {
mypoints.push_back(i);
}
}
if (cardsets.cardvalues[2].x > 0) {
//cout << "3rd-" << obj_names[cardsets.cardvalues[2].z] << endl;
}
if (mypoints.size() < 2) { return; }
sort(mypoints.begin(), mypoints.end(), SetSortRule);
int first = 0;
int second = 0;
if (mypoints.size() == 4) {//
if (mypoints[0].prob > mypoints[1].prob) {
//cout << "1st-" << obj_names[mypoints[0].obj_id] << endl;
first = 0;
}
else {
//cout << "1st-" << obj_names[mypoints[1].obj_id] << endl;
first = 1;
}
if (mypoints[2].prob > mypoints[3].prob) {
// cout << "2ed-" << obj_names[mypoints[2].obj_id] << endl;
second = 2;
}
else {
//cout << "2ed-" << obj_names[mypoints[3].obj_id] << endl;
second = 3;
}
}
else if (mypoints.size() == 3) {// if we only detect 3 points, take first one to match with other two decide which is pair
/* details of the theroy are on the notebook page */
int delta_y = mypoints[1].y - mypoints[0].y;
if (getCosineDistance(mypoints[0], mypoints[1]) < getCosineDistance(mypoints[0], mypoints[2]) && delta_y > 100) { // we assume they belong to one card
first = mypoints[0].prob > mypoints[1].prob ? 0 : 1;
second = 2;
}
else {// 0 and 1 not one card
// cout << "1st-" << obj_names[mypoints[0].obj_id] << endl;
second = mypoints[1].prob > mypoints[2].prob ? 1 : 2;
}
}
else if (mypoints.size() == 2) {
if (getCosineDistance(mypoints[0], mypoints[1]) < cosinetheta) { // we assume they belong to one card
first = mypoints[0].prob > mypoints[1].prob ? 0 : 1;
}
else {
second = 1;
}
}
cardsets.confidence[0] = mypoints[first].prob;
cardsets.cardvalues[0] = Point3f(mypoints[first].x, mypoints[first].y, mypoints[first].obj_id);
cardsets.confidence[1] = mypoints[second].prob;
cardsets.cardvalues[1] = Point3f(mypoints[second].x, mypoints[second].y, mypoints[second].obj_id);
ostringstream info;
info << "1st-" << obj_names[mypoints[first].obj_id] << ",confidence-" << setprecision(2) << fixed << mypoints[first].prob << ",";
info << "2ed-" << obj_names[mypoints[second].obj_id] << ",confidence-" << setprecision(2) << fixed << mypoints[second].prob << ",";
if (cardsets.cardvalues[2].x > 0) { info << "3rd-" << obj_names[cardsets.cardvalues[2].z] << ",confidence-" << setprecision(2) << fixed << cardsets.confidence[2] << ","; }
cout << info.str() << endl;
putText(mat_img, info.str(), cv::Point(5, 40), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 255));
}
结果2
void computeDTValue(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names,
int current_det_fps = -1, int current_cap_fps = -1)
{
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
int tempx = 0;
vector<bbox_t> mypoints; //
for (auto &i : result_vec) {
if (i.prob > confidencetheta) { // if I am not confident than 50%, skip this poker
mypoints.push_back(i);
}
}
sort(mypoints.begin(), mypoints.end(), SetSortRulebyConfidence);
int cardids = 0;
float confidence = 0;
if (mypoints.size() > 0) {
cardids = mypoints[0].obj_id;
confidence = mypoints[0].prob;
}
else { //error
cout << "nothing detected" << endl;
}
ostringstream info;
info << "1st-" << obj_names[cardids] << ",confidence-" << setprecision(2) << fixed << confidence << ",";
cout << info.str() << endl;
cv::putText(mat_img, info.str(), cv::Point(5, 40), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 255));
}
posted on 2019-04-28 23:27 MrCharles在cnblogs 阅读(192) 评论(0) 编辑 收藏 举报