C语言经典算法100例-014-分解质因数

题目如下:

将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5 

1.分析:思路是这样的,从1到N先找出最小的质因数,如果等于本身,那么说明只有一个质因数,如果不是,那么将该质因数打印出来,并将N/该质因数作为新的N值进行运算。

2.源代码:

#include <stdio.h>
#include <stdlib.h>
//将一个正整数分解质因数
int main()
{
    int i,n;
    printf("Please input an integer!\n");
    scanf("%d",&n);
    for(i=2;i<=n;i++)
    {
        while(n!=i)     //若i=n,则质因数就是n本身
        {
            if(n%i==0)  //若i是质因数,则打印出i的值,并用商给n赋新值
            {
                printf("%d\n",i);
                n=n/i;
            }
            else break;//若不能被i整除,则算下一个i
        }
    }
    printf("%d\n",n);   //这里是打印最后一个质因数,也就是等于i时的那个
    return 0;
}


i是从2到n的数,然后依次判断是否能被n整除,如果能被n整除,则i是n的质因数,将n/i作为新的n.用while控制可以同时多次分解同一个质因数。

原材料中的分析是这样的,可以参考一下:

n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成: 
(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。 
(2)如果n<>k,但n能被k整除,则应打印出k的值,并用n除以k的商,作为新的正整数n, 
重复执行第一步。 
(3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步。 


 

posted @ 2014-03-02 22:55  庄浩  阅读(375)  评论(0编辑  收藏  举报