poj 2954 Triangle 三角形内的整点数
poj 2954 Triangle
题意
给出一个三角形的三个点,问三角形内部有多少个整点。
解法
pick's law
一个多边形如果每个顶点都由整点构成,该多边形的面积为\(S\),该多边形边上的整点为\(L\),内部的整点为\(N\),则有:
$ N + L/2 - 1 = S \(
而对于两个点\)A(x_1,y_1)\(与\)B(x_2,y_2)\(,其边内部的整点数为:(不包含端点)
\) gcd ( abs(x_1 - x_2) , abs(y_1 - y_2) ) - 1 $
代码如下:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#define INF 2139062143
#define MAX 0x7ffffffffffffff
#define del(a,b) memset(a,b,sizeof(a))
#define Rint register int
using namespace std;
typedef long long ll;
template<typename T>
inline void read(T&x)
{
x=0;T k=1;char c=getchar();
while(!isdigit(c)){if(c=='-')k=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}x*=k;
}
struct G{
double x,y;
G(double x=0.0,double y=0.0):x(x),y(y){}
};
G operator + (const G &a ,const G& b){return G(a.x+b.x,a.y+b.y);}
G operator - (const G &a ,const G& b){return G(a.x-b.x,a.y-b.y);}
double cross(G a,G b){
return fabs(a.x*b.y-a.y*b.x);
}
struct node{
int x,y;
};
node a[3];
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
int get_node(node a,node b){
double x=fabs((double)a.x-b.x),y=fabs((double)a.y-b.y);
if(x==0&&y==0) return 0;
return gcd(x,y)-1;
}
int main()
{
while(1){
bool f=0;
for(int i=0;i<3;i++){
read(a[i].x),read(a[i].y);
if(a[i].x || a[i].y) f=1;
}
if(!f) break;
G b=G(a[1].x-a[0].x,a[1].y-a[0].y),c=G(a[2].x-a[0].x,a[2].y-a[0].y);
int s=int(cross(b,c)/2);
int L=get_node(a[0],a[1])+get_node(a[0],a[2])+get_node(a[2],a[1])+3;
printf("%d\n",s+1-L/2);
}
return 0;
}