【分库分表】sharding-jdbc—分片策略

一、分片策略

Sharding-JDBC认为对于分片策略存有两种维度:

  • 数据源分片策略(DatabaseShardingStrategy):数据被分配的目标数据源
  • 表分片策略(TableShardingStrategy):数据被分配的目标表

两种分片策略API完全相同,但是表分片策略是依赖于数据源分片策略的(即:先分库然后才有分表)

二、分片算法

Sharding分片策略继承自ShardingStrategy,提供了5种分片策略:

  

由于分片算法和业务实现紧密相关,因此Sharding-JDBC并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。

StandardShardingStrategy

标准分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。

StandardShardingStrategy只支持单分片键,提供PreciseShardingAlgorithm和RangeShardingAlgorithm两个分片算法。

  • PreciseShardingAlgorithm是必选的,用于处理=和IN的分片。
  • RangeShardingAlgorithm是可选的,用于处理BETWEEN AND分片,如果不配置RangeShardingAlgorithm,SQL中的BETWEEN AND将按照全库路由处理。

ComplexShardingStrategy

复合分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。

ComplexShardingStrategy支持多分片键,由于多分片键之间的关系复杂,因此Sharding-JDBC并未做过多的封装,而是直接将分片键值组合以及分片操作符交于算法接口,完全由应用开发者实现,提供最大的灵活度。

InlineShardingStrategy

Inline表达式分片策略。使用Groovy的Inline表达式,提供对SQL语句中的=和IN的分片操作支持。

InlineShardingStrategy只支持单分片键,对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如: tuser${user_id % 8} 表示t_user表按照user_id按8取模分成8个表,表名称为t_user_0到t_user_7。

HintShardingStrategy

通过Hint而非SQL解析的方式分片的策略。

NoneShardingStrategy

不分片的策略。

三、自定义分片算法

Sharding提供了以下4种算法接口:

  • PreciseShardingAlgorithm
  • RangeShardingAlgorithm
  • HintShardingAlgorithm
  • ComplexKeysShardingAlgorithm

可以自己实现自定义的分片算法,下面以t_order_items表为例自己实现分片算法:

标准分片策略(StandardShardingStrategy)

a、PreciseShardingAlgorithm实现:(Precise处理 = in 的路由)

        // 配置order_item表规则...
        TableRuleConfiguration orderItemTableRuleConfig = new TableRuleConfiguration();
        orderItemTableRuleConfig.setLogicTable("t_order_items");
        orderItemTableRuleConfig.setActualDataNodes("db${0..2}.t_order_items_${0..1}");
        // 自定义的分片算法实现
        StandardShardingStrategyConfiguration standardStrategy = new StandardShardingStrategyConfiguration("order_id",MyPreciseShardingAlgorithm.class.getName());

        // 配置分库策略
        orderItemTableRuleConfig.setDatabaseShardingStrategyConfig(standardStrategy);

        // 配置分表策略
        orderItemTableRuleConfig.setTableShardingStrategyConfig(standardStrategy);

        shardingRuleConfig.getTableRuleConfigs().add(orderItemTableRuleConfig);

        // 获取数据源对象
        DataSource dataSource = null;
        try {
            dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, new ConcurrentHashMap(), new Properties());
        } catch (SQLException e) {
            e.printStackTrace();
        }
        return dataSource;

自定义的分片算法,先继承接口,打印参数:

@Slf4j
public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> {
    @Override
    public String doSharding(Collection collection, PreciseShardingValue<Long> preciseShardingValue) {

        log.info("collection:" + JSON.toJSONString(collection) + ",preciseShardingValue:" + JSON.toJSONString(preciseShardingValue));
        return null;
    }
}

输出如下日志:(第一行路由是db,下一行是table)

2018-01-19 20:13:36,790 -2 collection:["db0","db1","db2"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":100}

……

2018-01-21 16:33:22,269 -2 collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":100}

于是可以简单实现一个类似Inline配置的规则:

@Slf4j
public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> {
    @Override
    public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
        log.info("collection:" + JSON.toJSONString(collection) + ",preciseShardingValue:" + JSON.toJSONString(preciseShardingValue));
        for (String name : collection) {
            if (name.endsWith(preciseShardingValue.getValue() % collection.size() + "")) {
                log.info("return name:"+name);
                return name;
            }
        }
        return null;
    }
}

 IN 条件的处理示例:

==> Preparing: select id,order_id,unique_no,quantity,is_active,inserttime,updatetime from t_order_items where is_active = 1 AND order_id in ( ? , ? , ? ) 
==> Parameters: 100(Long), 101(Long), 102(Long)


//第一轮route筛选数据库(分片键路由规则):
09:55:09.634 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["db0","db1","db2"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":100}
09:55:13.758 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:db1
09:55:17.767 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["db0","db1","db2"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":101}
09:55:21.361 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:db2
09:55:23.127 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["db0","db1","db2"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":102}
09:55:24.190 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:db0

//第二轮route按第一轮筛选到的db,逐个进行table的计算:
09:58:45.086 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":100}
09:58:46.725 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_0
09:58:58.647 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":101}
09:59:02.197 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_1
09:59:11.710 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":102}
09:59:12.604 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_0
10:00:01.538 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":100}
10:00:01.538 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_0
10:00:02.042 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":101}
10:00:02.042 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_1
10:00:02.442 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":102}
10:00:02.442 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_0
10:00:03.581 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":100}
10:00:03.581 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_0
10:00:03.946 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":101}
10:00:03.946 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_1
10:00:04.578 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","value":102}
10:00:04.578 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:t_order_items_0
View Code

b、PreciseShardingAlgorithm + RangeShardingAlgorithm

@Slf4j
public class MyRangeShardingAlgorithm implements RangeShardingAlgorithm<Long> {
    @Override
    public Collection<String> doSharding(Collection<String> collection, RangeShardingValue<Long> rangeShardingValue) {
        log.info("Range collection:" + JSON.toJSONString(collection) + ",rangeShardingValue:" + JSON.toJSONString(rangeShardingValue));
        Collection<String> collect = new ArrayList<>();
        Range<Long> valueRange = rangeShardingValue.getValueRange();
        for (Long i = valueRange.lowerEndpoint(); i <= valueRange.upperEndpoint(); i++) {
            for (String each : collection) {
                if (each.endsWith(i % collection.size() + "")) {
                    collect.add(each);
                }
            }
        }
        return collect;
    }
}
View Code

22:17:35.318 logback-demo [http-nio-8082-exec-6] INFO s.j.demo.controller.OrderController - selectByOrderIds ,startNo:100,endNo:101

路由输出log:

-- 第一轮计算db
22:16:51.732 logback-demo [http-nio-8082-exec-6] INFO s.j.d.d.MyRangeShardingAlgorithm - Range collection:["db0","db1","db2"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","valueRange":{"empty":false}}

-- 第二轮计算table

22:17:16.325 logback-demo [http-nio-8082-exec-6] INFO s.j.d.d.MyRangeShardingAlgorithm - Range collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","valueRange":{"empty":false}}
22:17:32.771 logback-demo [http-nio-8082-exec-6] INFO s.j.d.d.MyRangeShardingAlgorithm - Range collection:["t_order_items_0","t_order_items_1"],preciseShardingValue:{"columnName":"order_id","logicTableName":"t_order_items","valueRange":{"empty":false}}

 

路由到[db0,db1]X[t_order_items_0,t_order_items_1]表。

ComplexShardingStrategy

分库分表配置:user_id单键分库 + 【user_id+order_id】组合键分表

    @Bean(name = "shardingComplexDataSource", destroyMethod = "close")
    @Qualifier("shardingComplexDataSource")
    public DataSource getComlpexShardingDataSource() {
        // 配置真实数据源
        Map<String, DataSource> dataSourceMap = new HashMap<>(3);

        List<String> dbNames = new ArrayList<>();
        dbNames.add("db0");
        dbNames.add("db1");
        dbNames.add("db2");

        for (String dbName : dbNames) {
            DruidDataSource dataSource = createDefaultDruidDataSource();
            dataSource.setDriverClassName("com.mysql.jdbc.Driver");
            dataSource.setUrl("jdbc:mysql://localhost:3306/" + dbName);
            dataSource.setUsername("root");
            dataSource.setPassword("root");
            dataSourceMap.put(dbName, dataSource);
        }

        TableRuleConfiguration orderTableRuleConfig = new TableRuleConfiguration();
        orderTableRuleConfig.setLogicTable("t_order");
        orderTableRuleConfig.setActualDataNodes("db${0..2}."+"t_order_${0..1}_${0..1}");

        /**分库采用单片键 user_id*/
        orderTableRuleConfig.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("user_id", MyPreciseShardingAlgorithm.class.getName()));
        /**分表采用双片键 user_id*/
        orderTableRuleConfig.setTableShardingStrategyConfig(new ComplexShardingStrategyConfiguration("user_id,order_id", MyComplexShardingAlgorithm.class.getName()));

        ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
        shardingRuleConfig.getTableRuleConfigs().add(orderTableRuleConfig);

        // 获取数据源对象
        DataSource dataSource = null;
        try {
            dataSource = ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, new ConcurrentHashMap(), new Properties());
        } catch (SQLException e) {
            e.printStackTrace();
        }
        return dataSource;
    }
View Code

实现ComplexKeysShardingAlgorithm算法:

@Slf4j
public class MyComplexShardingAlgorithm implements ComplexKeysShardingAlgorithm {
    @Override
    public Collection<String> doSharding(Collection<String> collection, Collection<ShardingValue> shardingValues) {
        log.info("collection:" + JSON.toJSONString(collection) + ",shardingValues:" + JSON.toJSONString(shardingValues));

        Collection<Long> orderIdValues = getShardingValue(shardingValues, "order_id");
        Collection<Long> userIdValues = getShardingValue(shardingValues, "user_id");
        List<String> shardingSuffix = new ArrayList<>();
        /**例如:根据user_id + order_id 双分片键来进行分表*/
        //Set<List<Integer>> valueResult = Sets.cartesianProduct(userIdValues, orderIdValues);
        for (Long userIdVal : userIdValues) {
            for (Long orderIdVal : orderIdValues) {
                String suffix = userIdVal % 2 + "_" + orderIdVal % 2;
                collection.forEach(x -> {
                    if (x.endsWith(suffix)) {
                        shardingSuffix.add(x);
                    }
                });
            }
        }

        return shardingSuffix;
    }

    private Collection<Long> getShardingValue(Collection<ShardingValue> shardingValues, final String key) {
        Collection<Long> valueSet = new ArrayList<>();
        Iterator<ShardingValue> iterator = shardingValues.iterator();
        while (iterator.hasNext()) {
            ShardingValue next = iterator.next();
            if (next instanceof ListShardingValue) {
                ListShardingValue value = (ListShardingValue) next;
                /**例如:根据user_id + order_id 双分片键来进行分表*/
                if (value.getColumnName().equals(key)) {
                    return value.getValues();
                }
            }
        }
        return valueSet;
    }
}
View Code

运行示例:

16:53:16.267 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - collection:["db0","db1","db2"],preciseShardingValue:{"columnName":"user_id","logicTableName":"t_order","value":123}
16:53:16.267 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyPreciseShardingAlgorithm - return name:db0


16:53:16.740 logback-demo [http-nio-8082-exec-1] INFO s.j.d.d.MyComplexShardingAlgorithm - collection:["t_order_0_0","t_order_0_1","t_order_1_0","t_order_1_1"],shardingValues:[{"columnName":"order_id","logicTableName":"t_order","values":[321]},{"columnName":"user_id","logicTableName":"t_order","values":[123]}]

四、级联绑定表

级联绑定表代表一组表,这组表的逻辑表与实际表之间的映射关系是相同的。比如t_order与t_order_item就是这样一组绑定表关系,它们的分库与分表策略是完全相同的,那么可以使用它们的表规则将它们配置成级联绑定表。

 ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
 shardingRuleConfig.getTableRuleConfigs().add(getOrderTableRuleConfiguration());
 shardingRuleConfig.getTableRuleConfigs().add(getOrderItemTableRuleConfiguration());
 shardingRuleConfig.getBindingTableGroups().add("t_order, t_order_item");

那么在进行SQL路由时,如果SQL为:

SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.user_id=? AND o.order_id=?

其中t_order在FROM的最左侧,Sharding-JDBC将会以它作为整个绑定表的主表。所有路由计算将会只使用主表的策略,那么t_order_item表的分片计算将会使用t_order的条件。故绑定表之间的分区键要完全相同。

 
posted @ 2018-02-28 21:45  Mr.yang.localhost  阅读(38421)  评论(2编辑  收藏  举报