摘要:
在消费Kafka中分区的数据时,我们需要跟踪哪些消息是读取过的、哪些是没有读取过的。这是读取消息不丢失的关键所在。Kafka是通过offset顺序读取事件的。如果一个消费者退出,再重启的时候,它知道从哪儿继续读取消息进行处理。所以,消费者需要「提交」属于它们自己的偏移量。如果消费者已经提交了偏移量,但消息没有得到有效处理,此时就会造成消费者消息丢失。所以,我们应该重视偏移量提交的时间点以及提交的方... 阅读全文
摘要:
Flink中的时间类型和窗口是非常重要概念,是学习Flink必须要掌握的两个知识点。Flink中的时间类型时间类型介绍Flink流式处理中支持不同类型的时间。分为以下几种:处理时间Flink程序执行对应操作的系统时间。所有基于时间的操作(例如:时间窗口)都将使用运行相应operator的系统时间。例如:每个小时的处理时间窗口包括在系统时间范围内所有operator接收到的记录。例如:如果应用程序在... 阅读全文