「Flink」使用Managed Keyed State实现计数窗口功能
先上代码:
public class WordCountKeyedState { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 初始化测试单词数据流 DataStreamSource<String> lineDS = env.addSource(new RichSourceFunction<String>() { private boolean isCanaled = false; @Override public void run(SourceContext<String> ctx) throws Exception { while(!isCanaled) { ctx.collect("hadoop flink spark"); Thread.sleep(1000); } } @Override public void cancel() { isCanaled = true; } }); // 切割单词,并转换为元组 SingleOutputStreamOperator<Tuple2<String, Integer>> wordTupleDS = lineDS.flatMap((String line, Collector<Tuple2<String, Integer>> ctx) -> { Arrays.stream(line.split(" ")).forEach(word -> ctx.collect(Tuple2.of(word, 1))); }).returns(Types.TUPLE(Types.STRING, Types.INT)); // 按照单词进行分组 KeyedStream<Tuple2<String, Integer>, Integer> keyedWordTupleDS = wordTupleDS.keyBy(t -> t.f0); // 对单词进行计数 keyedWordTupleDS.flatMap(new RichFlatMapFunction<Tuple2<String, Integer>, Tuple2<String, Integer>>() { private transient ValueState<Tuple2<Integer, Integer>> countSumValueState; @Override public void open(Configuration parameters) throws Exception { // 初始化ValueState ValueStateDescriptor<Tuple2<Integer, Integer>> countSumValueStateDesc = new ValueStateDescriptor("countSumValueState", TypeInformation.of(new TypeHint<Tuple2<Integer, Integer>>() {}) ); countSumValueState = getRuntimeContext().getState(countSumValueStateDesc); } @Override public void flatMap(Tuple2<String, Integer> value, Collector<Tuple2<String, Integer>> out) throws Exception { if(countSumValueState.value() == null) { countSumValueState.update(Tuple2.of(0, 0)); } Integer count = countSumValueState.value().f0; count++; Integer valueSum = countSumValueState.value().f1; valueSum += value.f1; countSumValueState.update(Tuple2.of(count, valueSum)); // 每当达到3次,发送到下游 if(count > 3) { out.collect(Tuple2.of(value.f0, valueSum)); // 清除计数 countSumValueState.update(Tuple2.of(0, valueSum)); } } }).print(); env.execute("KeyedState State"); } }
代码说明:
1、构建测试数据源,每秒钟发送一次文本,为了测试方便,这里就发一个包含三个单词的文本行
2、对句子按照空格切分,并将单词转换为元组,每个单词初始出现的次数为1
3、按照单词进行分组
4、自定义FlatMap
初始化ValueState,注意:ValueState只能在KeyedStream中使用,而且每一个ValueState都对一个一个key。每当一个并发处理ValueState,都会从上下文获取到Key的取值,所以每个处理逻辑拿到的ValueStated都是对应指定key的ValueState,这个部分是由Flink自动完成的。
注意:
带默认初始值的ValueStateDescriptor已经过期了,官方推荐让我们手动在处理时检查是否为空
instead and manually manage the default value by checking whether the contents of the state is null.
”
/**
* Creates a new {@code ValueStateDescriptor} with the given name, default value, and the specific
* serializer.
*
* @deprecated Use {@link #ValueStateDescriptor(String, TypeSerializer)} instead and manually
* manage the default value by checking whether the contents of the state is {@code null}.
*
* @param name The (unique) name for the state.
* @param typeSerializer The type serializer of the values in the state.
* @param defaultValue The default value that will be set when requesting state without setting
* a value before.
*/
@Deprecated
public ValueStateDescriptor(String name, TypeSerializer<T> typeSerializer, T defaultValue) {
super(name, typeSerializer, defaultValue);
}
5、逻辑实现
在flatMap逻辑中判断ValueState是否已经初始化,如果没有手动给一个初始值。并进行累加后更新。每当count > 3发送计算结果到下游,并清空计数。
关注公众号大数据君!关注最新的大数据技术动态!