【转】【WPF】wpf 图片指针处理

我一直用GDI+做Winform 的基于指针的图片处理,这次下决心全部移到wpf上(主要是显示布局很方便)
采用的图片是
2512*3307 的大图 830万像素
类库基于WritableBitmapEx 的wpf版本
函数是我自己写的扩展方法,只是利用了 writableBitmapEx提供的环境 ,我懒得从头到尾自己写了
 
1.标准int32数组遍历计算 release
0.28s

public unsafe static void TestGray1(WriteableBitmap bmp)
       {
            using (var context = bmp.GetBitmapContext())
            {
                int height = context.Height;
                int width = context.Width;
                for (int y = 0; y < height; y++)
                {
                    for (int x = 0; x < width; x++)
                    {
                        int pos = y * context.Width + x;
                        var c = context.Pixels[pos];
                        var r = (byte)(c >> 16);
                        var g = (byte)(c >> 8);
                        var b = (byte)(c);

                        var gray = ((r * 38 + g * 75 + b * 15) >> 7);

                        var color = (255 << 24) | (gray << 16) | (gray << 8) | gray;
                        context.Pixels[pos] = color;
                    }
                }
            }
        }

2.标准int32指针遍历计算 release

0.04s

public unsafe static void TestGray2(WriteableBitmap bmp)
        {
            using (var context = bmp.GetBitmapContext())
            {
                var ptr = context.Pixels;
                int height = context.Height;
                int width = context.Width;
                for (int y = 0; y < height; y++)
                {
                    for (int x = 0; x < width; x++)
                    {
                        var c = *ptr;
                        var r = (byte)(c >> 16);
                        var g = (byte)(c >> 8);
                        var b = (byte)(c);

                        var gray = ((r * 38 + g * 75 + b * 15) >> 7);

                        var color = (255 << 24) | (gray << 16) | (gray << 8) | gray;
                        *ptr = color;

                        ptr++;
                    }
                }
            }
        }

3.colorstruct指针 遍历计算

0.02 s

应该是已经到极限速度了[除了后面的并行方式],我已经想不出还有什么方法可以提高处理速度

而且这种方式是最直观的,最容易理解的处理方式,也便于以后维护

[StructLayout(LayoutKind.Sequential)]
    public struct PixelColor
    {
        public byte Blue;
        public byte Green;
        public byte Red;
        public byte Alpha;
    }

 

public unsafe static void TestGray3(WriteableBitmap bmp)
        {
            using (var context = bmp.GetBitmapContext())
            {
                var ptr = (PixelColor*)context.Pixels;

                int height = context.Height;
                int width = context.Width;
                for (int y = 0; y < height; y++)
                {
                    for (int x = 0; x < width; x++)
                    {
                        var c = *ptr;
                        var gray = ((c.Red * 38 + c.Green * 75 + c.Blue * 15) >> 7);
                        (*ptr).Green=(*ptr).Red=(*ptr).Blue = (byte)gray;

                        ptr++;
                    }
                }
            }
        }

4.作为对比,我又测试了一下 GDI+的 指针处理图片的速度

0.06s

public static unsafe Bitmap ToGray(Bitmap img)
        {
            var rect = new System.Drawing.Rectangle(0, 0, img.Width, img.Height);
            var data = img.LockBits(rect, System.Drawing.Imaging.ImageLockMode.ReadOnly, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
            var ptr = (ColorType*)data.Scan0.ToPointer();
            var bytes = new Int32[img.Width * img.Height];
            var height = img.Height;
            var width = img.Width;
            for (int y = 0; y < height; y++)
            {
                for (int x = 0; x < width; x++)
                {
                    var color = *ptr;
                    var gray = ((color.R * 38 + color.G * 75 + color.B * 15) >> 7);

                    (*ptr).R = (*ptr).G = (*ptr).B = (byte)gray;

                    ptr++;
                }
            }
            img.UnlockBits(data);
            return img;
        }

5.重头戏来了。我一直对Parallel.For 很迷惑,为什么他的消耗时间是普通for的好几倍。今天仔细研究了一下,发现原来是用错了

0.01秒   release

 笔记本i5cpu,如果台式机的I7会更加强悍,速度会成半成半降低。

主要是利用了微软的任务并行库的循环并行化的方法。

注意:默认的并行循环对于函数体很小的情况是很慢的,这种情况必须用Partitioner 创建循环体,这在MSDN有介绍,是关键之中的关键

public  unsafe static void TestGray5(WriteableBitmap bmp)
        { 
            using (var context = bmp.GetBitmapContext())
            {
                int height = context.Height;
                int width = context.Width;

                Parallel.ForEach(Partitioner.Create(0, height), (h) =>
                {
                    var ptr = (PixelColor*)context.Pixels;
                    ptr += h.Item1 * width;

                    for (int y = h.Item1; y < h.Item2; y++)
                    {
                        for (int x = 0; x < width; x++)
                        {
                            var c = *ptr;
                            var gray = ((c.Red * 38 + c.Green * 75 + c.Blue * 15) >> 7);
                            (*ptr).Green = (*ptr).Red = (*ptr).Blue = (byte)gray;

                            ptr++;
                        }
                    }

                });

            }
        }

 

感想

1.绝对不要在循环体内使用属性或函数,很有可能会降低数倍计算速度。

因为属性本质上是个函数,而在循环体内最好不要再调用函数,如果确实需要用内联代码的方式,c#没有inline,那么copy代码吧,反正为了速度。

2. 用指针移位操作 似乎比 直接数组访问要快10倍啊

我感觉要么是cache命中的原因,要么是 数组本身存取被属性封装了。相当于又调用了函数。

3.TPL 任务并行库果真好用,看来微软早已考虑过大量数据并行的循环优化问题09年,只是我一直用错了方法,才觉得很慢。

摘自 苦力熊

 

原文地址:http://www.2cto.com/kf/201204/129454.html

 

posted on 2014-06-05 14:17  梦琪小生  阅读(895)  评论(0编辑  收藏  举报

导航