Mapreduce之mappper_join

  Mapreduce的mapper方法里的多表联查。

  首先要确定一个大表和一个小表,然后将小表放在内存的缓冲区之中。

job.addCacheFile(new URI("hdfs://master:9000/mapreduce2/in/product.txt"));

  然后在mapper方法之中,执行的时候要将本地缓冲区的数据写入到一个map集合。是重写一个setup方法。

  放入map集合的时候选取一个字段作为key。

  大表是要放在map方法中来进行操作的。将大表的字段作为key,取出value的值。这个key和之前放入map的key是同一属性值。

  看个例子:

  

package MapJoin;

import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;

public class Join_Mapper extends Mapper<LongWritable, Text,Text,Text> {
    private HashMap<String,String> map=new HashMap<String, String>();
    //一、将本地缓存区小表的数据读取到Map集合(只需要做一次)
    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        //获取分布式文件缓存列表
        URI[] cacheFiles = context.getCacheFiles();
        //获取分布式缓存文件的文件系统FileSystem
        FileSystem fileSystem = FileSystem.get(cacheFiles[0], context.getConfiguration());
        //获取文件的输入流
        FSDataInputStream inputStream = fileSystem.open(new Path(cacheFiles[0]));
        //读取文件内容,并将数据存入Map集合
            //将字节输入流转为字符缓冲流
        BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
            //读取小表的内容,并将读取的数据存入Map集合
        String line = null;

        while((line = bufferedReader.readLine()) != null){
            String[] split = line.split(",");
            map.put(split[0],line);
        }
        //关闭流

        bufferedReader.close();
//        fileSystem.close();
    }
    //二、将达标的数据和小表的数据进行join
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] split = value.toString().split(",");
        String name = split[2];
        //将name作为map的key,获取到value,然后进行拼接;得到V2
        String productLine = map.get(name);
        String valueLine = productLine+"\t"+value.toString();
        context.write(new Text(name),new Text(valueLine));


    }
}
package MapJoin;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.net.URI;

public class MapJoinJob extends Configured implements Tool {
    public int run(String[] strings) throws Exception {
        Job job = Job.getInstance(super.getConf(), "Map_job");
        //将小表放在分布式缓存中
        job.addCacheFile(new URI("hdfs://master:9000/mapreduce2/in/product.txt"));

        job.setInputFormatClass(TextInputFormat.class);
        TextInputFormat.addInputPath(job,new Path("hdfs://master:9000/mapreduce2/in/order.txt"));

        job.setMapperClass(Join_Mapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);

        job.setOutputFormatClass(TextOutputFormat.class);
        TextOutputFormat.setOutputPath(job,new Path("hdfs://master:9000/mapreduce2/Map_Join_out"));
        boolean b = job.waitForCompletion(true);
        return b?0:1;
    }

    public static void main(String[] args) throws Exception {
        Configuration configuration = new Configuration();
        int run = ToolRunner.run(configuration, new MapJoinJob(), args);
        System.exit(run);

    }
}

 

  

  

posted on 2020-11-20 00:01  沫戏回首  阅读(109)  评论(0编辑  收藏  举报

导航