摘要: 目录一、无穷限反常积分的审敛法二、无界函数的反常积分审敛法三、\(\Gamma\) 函数 一、无穷限反常积分的审敛法 定理1 设函数 \(f(x)\) 在区间 \([a, +\infty)\) 上连续,且 \(f(x) \geqslant 0\).若函数 \[F(x) = \int_a^x f(t) 阅读全文
posted @ 2024-10-16 18:55 暮颜 阅读(14) 评论(0) 推荐(0) 编辑
摘要: 目录一、无穷限的反常积分二、无界函数的反常积分 一、无穷限的反常积分 设函数 \(f(x)\) 在区间 \([a, + \infty)\) 上连续,任取 \(t > a\) ,作定积分 \(\displaystyle \int_a^t f(x) \mathrm{d}x\) ,再求极限 \[\lim_ 阅读全文
posted @ 2024-10-16 18:09 暮颜 阅读(15) 评论(0) 推荐(0) 编辑
摘要: 目录一、定积分的换元法二、定积分的分部积分法 一、定积分的换元法 定理 设函数 \(f(x)\) 在区间 \([a, b]\) 上连续,函数 \(x = \varphi(t)\) 满足条件: (1)\(\varphi (\alpha) = a, \varphi (\beta) = b\) ; (2) 阅读全文
posted @ 2024-10-16 15:20 暮颜 阅读(14) 评论(0) 推荐(0) 编辑