高等数学 5.3 定积分的换元法和分部积分法
一、定积分的换元法
定理 设函数 \(f(x)\) 在区间 \([a, b]\) 上连续,函数 \(x = \varphi(t)\) 满足条件:
(1)\(\varphi (\alpha) = a, \varphi (\beta) = b\) ;
(2)\(\varphi (t)\) 在 \([\alpha, \beta]\) (或 \([\beta, \alpha]\)) 上具有连续导数,且其值域 \(R_{\varphi} = [a, b]\) ,则有\[\int_a^b f(x) \mathrm{d}x = \int_{\alpha}^{\beta} f[\varphi (t)] \varphi' (t) \mathrm{d}t . \tag{1} \]
公式 \((1)\) 叫做定积分的换元公式。
在定积分 \(\displaystyle \int_a^b f(x) \mathrm{d}x\) 中的 \(\mathrm{d}x\) ,本来是整个定积分记号中不可分割的一部分,但由上述定理可知,在一定条件下,它确实可以作为微分记号来对待。这就是说,应用换元公式时,如果把 \(\displaystyle \int_a^b f(x) \mathrm{d}x\) 中的 \(x\) 换成 \(\varphi (t)\) ,那么 \(\mathrm{d}x\) 就换成 \(\varphi' (t) \mathrm{d}t\) ,这正好是 \(x = \varphi (t)\) 的微分 \(\mathrm{d}x\) 。
应用换元公式时有两点值得注意:
(1)用 \(x = \varphi (t)\) 把原来变量 \(x\) 代换成新变量 \(t\) 时,积分上下限也要换成相应于新变量 \(t\) 的积分上下限;
(2)求出 \(f[\varphi (t)] \varphi' (t)\) 的一个原函数 \(\Phi (t)\) 后,不必像计算不定积分那样再要把 \(\Phi (t)\) 变换成原来变量 \(x\) 的函数,而只要把新变量 \(t\) 的上、下限分别代入 \(\Phi (t)\) 中然后相减就行了。
几个重要的结论:
(1)若 \(f(x)\) 在 \([-a, a]\) 上连续且为偶函数,则
(2)若 \(f(x)\) 在 \([-a, a]\) 上连续且为奇函数,则
(3)设 \(f(x)\) 是连续的周期函数,周期为 \(T\) ,那么
(i)\(\displaystyle \int_a^{a + T} f(x) \mathrm{d}x = \int_0^T f(x) \mathrm{d}x\) ,
(ii)\(\displaystyle \int_a^{a + nT} f(x) \mathrm{d}x = n \int_0^T f(x) \mathrm{d}x (n \in \mathbb{N})\) .
二、定积分的分部积分法
依据不定积分的分部积分法,若 \(u(x), v(x)\) 在 \([a, b]\) 上具有连续导数,则
简记作
或
公式 \((2)\) 叫做定积分的分部积分公式。公式表明原函数已经积出的部分可以先用上下限代入。
一个定积分公式
作者: 暮颜 —— 衣带渐宽终不悔
出处:https://www.cnblogs.com/mowenpan1995/
版权归作者和博客园共有,欢迎转载。但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
转载请注明原文链接:https://www.cnblogs.com/mowenpan1995/p/18469989/gdsx5-3djfdhyfhfbjff
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。