第二类换元法是:适当选择变量代换 \(x = \psi(t)\) ,将积分 \(\int f(x) \mathrm{d}x\) 化为积分 \(\int f[\psi(t)]\psi'(t)\mathrm{d}t\) .这是另一种形式的变量代换,换元公式可表达为
\[\int f(x) \mathrm{d}x = \int f[\psi(t)] \psi'(t) \mathrm{d}t
\]
这公式成立是需要一定条件的。首先,等式右边的不定积分要存在,即 \(f[\psi(t)] \psi'(t)\) 有原函数;其次,\(\int f[\psi(t)] \psi'(t) \mathrm{d}t\) 求出后必须用 \(x = \psi(t)\) 的反函数 \(t = \psi^{-1} (x)\) 代回去,为了保证这反函数存在且可导,我们假定直接函数 \(x = \psi(t)\) 在 \(t\) 的某一个区间上式单调的、可导的、并且 \(\psi'(t) \neq 0\) 。
定理 设 \(x = \psi(t)\) 是单调的可导函数,并且 \(\psi'(t) \neq 0\) .又设 \(f[\psi(t)]\psi'(t)\) 具有原函数,则有换元公式
\[\int f(x) \mathrm{d}x = \left[ \int f[\psi(t)] \psi'(t) \mathrm{d}t \right]_{t = \psi^{-1}(x)} \tag{1}
\]
其中 \(\psi^{-1}(x)\) 是 \(x = \psi (t)\) 的反函数。
证明:设 \(f[\psi(t)]\psi'(t)\) 的原函数为 \(\Phi(t)\) ,记 \(\Phi[\psi^{-1}(x)] = F(x)\) ,利用复合函数及反函数的求导法则,得到
\[F'(x) = \cfrac{\mathrm{d} \Phi}{\mathrm{d}t} \cdot \cfrac{\mathrm{d}t}{\mathrm{d}x} = f[\psi(t)]\psi'(t) \cdot \cfrac{1}{\psi'(t)} = f[\psi(t)] = f(x)
\]
即 \(F(x)\) 是 \(f(x)\) 的原函数。所以有
\[\int f(x) \mathrm{d}x = F(x) + C = \Phi[\psi^{-1}(x)] + C = \left[ \int f[\psi(t)] \psi'{t} \mathrm{d}t \right]_{t = \psi^{-1}(x)} .
\]
这就证明了换元公式 \((1)\) 。
例21 求 \(\displaystyle \int \sqrt{a^2 - x^2} \mathrm{d}x (a > 0)\) .
解:这个积分的困难在于有根式 \(\sqrt{a^2 - x^2}\) ,但我们可以利用三角函数公式
\[\sin^2t + \cos^2t = 1
\]
来化去根式。
设 \(x = \sin t, - \cfrac{\pi}{2} < t < \cfrac{\pi}{2}\) ,则 \(\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2t} = a \cos t, \mathrm{d}x = a \cos t \mathrm{d}t\) ,所求积分化为
\[\int \sqrt{a^2 - x^2} \mathrm{d}x = \int a \cos t \cdot a \cos t \mathrm{d}t = a^2 \int \cos^2 t \mathrm{d}t.
\]
又
\[\int \sqrt{a^2 - x^2} \mathrm{d}x = a^2 \left( \cfrac{t}{2} + \cfrac{\sin 2t}{4} \right) +C = \cfrac{a^2}{2} t + \cfrac{a^2}{2} \sin t \cos t + C .
\]
由于 \(x = \sin t, - \cfrac{\pi}{2} < t < \cfrac{\pi}{2}\) ,所以
\[t = \arcsin \cfrac{x}{a} , \\
\cos t = \sqrt{1 - \sin^2t} = \sqrt{1 - \left( \cfrac{x}{a} \right)^2} = \cfrac{\sqrt{a^2 - x^2}}{a} ,
\]
于是所求积分为
\[\int \sqrt{a^2 - x^2} \mathrm{d}x = \cfrac{a^2}{2} \arcsin \cfrac{x}{a} + \cfrac{1}{2} x \sqrt{a^2 - x^2} + C .
\]
例22 求 \(\displaystyle \int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} (a>0)\) .
解:可利用三角函数公式
\[1 + \tan^2 t = \sec^2 t
\]
来化去根式。
设 \(x = a \tan t \left( - \cfrac{\pi}{2} < t < \cfrac{\pi}{2} \right)\) ,则
\[\sqrt{x^2 + a^2} = \sqrt{a^2 \tan^2 t + a^2} = a \sqrt{\tan^2 t + 1} = a \sec t, \mathrm{d}x = a \sec^2t \mathrm{d}t,
\]
于是
\[\int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \int \cfrac{a \sec^2 t}{a \sec t} \mathrm{d}t = \int \sec t \mathrm{d}t = \ln{|\sec t + \tan t|} + C .
\]
为了把 \(\sec t\) 及 \(\tan t\) 转换成 \(x\) 的函数,可以根据 \(\tan t = \cfrac{x}{a}\) 作辅助三角形,便有
\[\sec t = \cfrac{\sqrt{x^2 + a^2}}{a},
\]
且 \(\sec t + \tan t > 0\),因此,
\[\int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln{\left( \cfrac{x}{a} + \cfrac{\sqrt{x^2 + a^2}}{a} \right)} + C = \ln{(x + \sqrt{x^2 + a^2})} + C_1,
\]
其中 \(C_1 = C - \ln a\) .
例23 \(\displaystyle \int \cfrac{\mathrm{d}x}{\sqrt{x^2 - a^2}} (a>0)\) .
解:可利用公式
\[\sec^2 t - 1 = \tan^2 t
\]
来化去根式。注意到被积函数的定义域是 \(x > a\) 和 \(x < -a\) 两个区间,我们在两个区间内分别求不定积分。
当 \(x > a\) 时,设 \(x = a\sec t \left( 0 < t < \cfrac{\pi}{2} \right)\),则
\[\sqrt{x^2 - a^2} = \sqrt{a^2 \sec^2 t - a^2} = a \sqrt{\sec^2 t - 1} = a\tan t, \\
\mathrm{d}x = a \sec t \tan t \mathrm{d}t,
\]
于是
\[\int \cfrac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \int \cfrac{a \sec t \tan t}{a \tan t} \mathrm{d}t = \int \sec t \mathrm{d}t = \ln{(\sec t + \tan t)} + C.
\]
根据 \(\sec t = \cfrac{x}{a}\) 作辅助三角形得
\[\tan t = \cfrac{\sqrt{x^2 - a^2}}{a}
\]
因此
\[\int \cfrac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln{\left( \cfrac{x}{a} + \cfrac{\sqrt{x^2 - a^2}}{a} \right)} + C = \ln{(x + \sqrt{x^2 - a^2})} + C_1
\]
其中 \(C_1 = C - \ln a\) .
当 \(x < -a\) 时,令 \(x = -u\),那么 \(u > a\),由上段结果,有
\[\begin{align*}
\int \cfrac{\mathrm{d}x}{\sqrt{x^2 - a^2}} &= - \int \cfrac{\mathrm{d}u}{\sqrt{u^2 - a^2}} = - \ln{(u + \sqrt{u^2 - a^2})} + C \\
&= - \ln{(-x + \sqrt{x^2 - a^2})} + C = \ln{\cfrac{-x - \sqrt{x^2 - a^2}}{a^2}} + C \\
&=\ln{(-x - \sqrt{x^2 - a^2})} + C_1
\end{align*}
\]
其中 \(C_1 = C - 2 \ln a\).
把 \(x > a\) 及 \(x < -a\) 内的结果合起来,得,
\[\int \cfrac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln{|x + \sqrt{x^2 - a^2}|} + C
\]
从上述三个例子可知:
- 如果被积函数含有 \(\sqrt{a^2 - x^2}\) ,可以作代换 \(x = a \sin t\) 化去根式;
- 如果被积函数含有 \(\sqrt{x^2 + a^2}\) ,可以作代换 \(x = a \tan t\) 化去根式;
- 如果被积函数含有 \(\sqrt{x^2 - a^2}\) ,可以作代换 \(x = \pm a \sec t\) 化去根式.
可以利用另一种代换——倒代换 消去被积函数的分母中的变量因子 \(x\) 。
例24 求 \(\displaystyle \int \cfrac{\sqrt{a^2 - x^2}}{x^4} \mathrm{d}x (a \neq 0)\) .
解:设 \(x = \cfrac{1}{t}\) ,则 \(\mathrm{d}x = - \cfrac{\mathrm{d}t}{t^2}\),于是
\[\int \cfrac{\sqrt{a^2 - x^2}}{x^4} \mathrm{d}x = \int \cfrac{\sqrt{a^2 - \cfrac{1}{t^2}} \cdot \left( - \cfrac{\mathrm{d}t}{t^2} \right)}{\cfrac{1}{t^4}} = - \int (a^2 t^2 - 1)^{\frac{1}{2}} |t| \mathrm{d}t,
\]
当 \(x > 0\) 时,有
\[\begin{align*}
\int \cfrac{\sqrt{a^2 - x^2}}{x^4} \mathrm{d}x &= - \cfrac{1}{2a} \int (a^2 t^2 - 1)^{\frac{1}{2}}\mathrm{d}(a^2 t^2 - 1) \\
&= - \cfrac{(a^2 t^2 - 1)^{\frac{3}{2}}}{3 a^2} + C \\
&= - \cfrac{(a^2 - x^2)^{\frac{3}{2}}}{3 a^2 x^3} + C
\end{align*}
\]
例27 求 \(\displaystyle \int \cfrac{x^3}{(x^2 - 2x + 2)^2} \mathrm{d}x\) .
解:分母是二次质因式的平方,把二次质因式配方成 \((x - 1)^2 + 1\) ,令 \(x - 1 = \tan t \left( - \cfrac{\pi}{2} < t < \cfrac{\pi}{2} \right)\) ,则
\[x^2 - 2x + 2 = \sec^2 t, \quad \mathrm{d}x = \sec^2 t \mathrm{d}t .
\]
于是
\[\begin{align*}
\int \cfrac{x^3}{(x^2 - 2x + 2)^2} \mathrm{d}x
&= \int \cfrac{(\tan t + 1)^3}{\sec^4 t} \cdot \sec^2 t \mathrm{d}t \\
&= \int (\sin^3 t \cos^{-1}t + 3\sin^2 t + 3\sin t \cos t + \cos^2 t) \mathrm{d}t \\
&= \int (\sin^2 t \cos^{-1}t + 3 \cos t) \sin t \mathrm{d}t + \int (3\sin^2 t + \cos^2 t) \mathrm{d}t \\
&= \int [(1 - \cos^2 t) \cos^{-1}t + 3 \cos t][- \mathrm{d}(\cos t)] + \int (2 - \cos 2t) \mathrm{d}t \\
&= - \int (\cos^{-1} t + 2\cos t) \mathrm{d}(\cos t) + 2t - \cfrac{1}{2} \sin 2t \\
&= -\ln{\cos t} - \cos^2 t + 2t - \sin t \cos t + C,
\end{align*}
\]
按 \(\tan t = x - 1\) 作辅助三角形,便有
\[\cos t = \cfrac{1}{\sqrt{x^2 - 2x + 2}}, \quad \sin t = \cfrac{x - 1}{\sqrt{x^2 - 2x + 2}},
\]
于是
\[\int \cfrac{x^3}{(x^2 - 2x + 2)^2} \mathrm{d}x = \cfrac{1}{2} \ln{(x^2 - 2x + 2)} + 2 \arctan{(x - 1)} - \cfrac{x}{x^2 - 2x + 2} + C.
\]